On some imaginary triquadratic number fields k with Cl 2 ( k ) ( 2 , 4 ) or ( 2 , 2 , 2 )

Abdelmalek Azizi; Mohamed Mahmoud Chems-Eddin; Abdelkader Zekhnini

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Issue: 1, page 1-14
  • ISSN: 0010-2628

Abstract

top
Let d be a square free integer and L d : = ( ζ 8 , d ) . In the present work we determine all the fields L d such that the 2 -class group, Cl 2 ( L d ) , of L d is of type ( 2 , 4 ) or ( 2 , 2 , 2 ) .

How to cite

top

Azizi, Abdelmalek, Chems-Eddin, Mohamed Mahmoud, and Zekhnini, Abdelkader. "On some imaginary triquadratic number fields $k$ with ${\rm Cl}_2(k) \simeq (2, 4)$ or $(2, 2, 2)$." Commentationes Mathematicae Universitatis Carolinae (2021): 1-14. <http://eudml.org/doc/298193>.

@article{Azizi2021,
abstract = {Let $d$ be a square free integer and $L_d:=\mathbb \{Q\}(\zeta _\{8\},\sqrt\{d\})$. In the present work we determine all the fields $L_d$ such that the $2$-class group, $\mathrm \{Cl\}_2(L_d)$, of $L_d$ is of type $(2,4)$ or $(2,2,2)$.},
author = {Azizi, Abdelmalek, Chems-Eddin, Mohamed Mahmoud, Zekhnini, Abdelkader},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$2$-group rank; $2$-class group; imaginary triquadratic number fields},
language = {eng},
number = {1},
pages = {1-14},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On some imaginary triquadratic number fields $k$ with $\{\rm Cl\}_2(k) \simeq (2, 4)$ or $(2, 2, 2)$},
url = {http://eudml.org/doc/298193},
year = {2021},
}

TY - JOUR
AU - Azizi, Abdelmalek
AU - Chems-Eddin, Mohamed Mahmoud
AU - Zekhnini, Abdelkader
TI - On some imaginary triquadratic number fields $k$ with ${\rm Cl}_2(k) \simeq (2, 4)$ or $(2, 2, 2)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 1
EP - 14
AB - Let $d$ be a square free integer and $L_d:=\mathbb {Q}(\zeta _{8},\sqrt{d})$. In the present work we determine all the fields $L_d$ such that the $2$-class group, $\mathrm {Cl}_2(L_d)$, of $L_d$ is of type $(2,4)$ or $(2,2,2)$.
LA - eng
KW - $2$-group rank; $2$-class group; imaginary triquadratic number fields
UR - http://eudml.org/doc/298193
ER -

References

top
  1. Azizi A., 10.1007/BF02844380, Rend. Circ. Mat. Palermo (2) 48 (1999), no. 1, 71–92 (French. English summary). MR1705171DOI10.1007/BF02844380
  2. Azizi A., Unités de certains corps de nombres imaginaires et abéliens sur , Ann. Sci. Math. Québec 23 (1999), no. 1, 15–21 (French. English, French summary). MR1721726
  3. Azizi A., Sur les unités de certains corps de nombres de degré 8 sur , Ann. Sci. Math. Québec 29 (2005), no. 2, 111–129 (French. English, French summary). MR2309703
  4. Azizi A., Chems-Eddin M. M., Zekhnini A., On the rank of the 2 -class group of some imaginary triquadratic number fields, Rend. Circ. Mat. Palermo, II. Ser. (2021), 19 pages. MR4175725
  5. Azizi A., Mouhib A., 10.4064/aa109-1-2, Acta. Arith. 109 (2003), no. 1, 27–63 (French). MR1980850DOI10.4064/aa109-1-2
  6. Azizi A., Taous M., 10.4064/aa131-2-1, Acta Arith. 131 (2008), no. 2, 103–123 (French). MR2388046DOI10.4064/aa131-2-1
  7. Azizi A., Taous M., Déterminations des corps K = ( d , - 1 ) dont les 2 -groupes de classes sont de type ( 2 , 4 ) ou ( 2 , 2 , 2 ) , Rend. Istit. Mat. Univ. Trieste 40 (2008), 93–116 (French. English, French summary). MR2583453
  8. Azizi A., Zekhnini A., Taous M., 10.1142/S1793557114500211, Asian-Eur. J. Math. 7 (2014), no. 1, 1450021, 26 pages. MR3189588DOI10.1142/S1793557114500211
  9. Azizi A., Zekhnini A., Taous M., The generators of the 2 -class group of some fields ( p q 1 q 2 , i ) : Correction to Theorem 3 of [ 5 ] , IJPAM. 103 (2015), no. 1, 99–107. 
  10. Azizi A., Zekhnini A., Taous M., 10.3906/mat-1704-63, Turkish J. Math. 42 (2018), no. 2, 703–715. MR3794499DOI10.3906/mat-1704-63
  11. Benjamin E., Lemmermeyer F., Snyder C., Imaginary quadratic fields k with Cl 2 ( k ) ( 2 , 2 m ) and rank Cl 2 ( k 1 ) = 2 , Pacific J. Math. 198 (2001), no. 1, 15–31. MR1831970
  12. Benjamin E., Lemmermeyer F., Snyder C., 10.1016/S0022-314X(03)00084-2, J. Number Theory 103 (2003), no. 1, 38–70. MR2008065DOI10.1016/S0022-314X(03)00084-2
  13. Benjamin E., Lemmermeyer F., Snyder C., 10.2140/pjm.2007.230.27, Pacific J. Math. 230 (2007), no. 1, 27–40. MR2318446DOI10.2140/pjm.2007.230.27
  14. Brown E., 10.1090/S0002-9939-1972-0289455-6, Proc. Amer. Math. Soc. 31 (1972), 381–383. MR0289455DOI10.1090/S0002-9939-1972-0289455-6
  15. Conner P. E., Hurrelbrink J., Class Number Parity, Series in Pure Mathematics, 8, World Scientific Publishing, Singapore, 1988. MR0963648
  16. Herglotz G., Über einen Dirichletschen Satz, Math. Z. 12 (1922), no. 1, 255–261 (German). MR1544516
  17. Kaplan P., Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2 -groupe des classes est cyclique, et réciprocité biquadratique, J. Math. Soc. Japan 25 (1973), 596–608 (French). MR0323757
  18. Kaplan P., Sur le 2 -groupe des classes d’idéaux des corps quadratiques, J. Reine Angew. Math. 283(284) (1976), 313–363 (French). MR0404206
  19. Kučera R., 10.1006/jnth.1995.1054, J. Number theory 52 (1995), no. 1, 43–52. MR1331764DOI10.1006/jnth.1995.1054
  20. Lemmermeyer F., 10.4064/aa-72-4-347-359, Acta Arith. 72 (1995), no. 4, 347–359. MR1348202DOI10.4064/aa-72-4-347-359
  21. Kuroda S., 10.1017/S0027763000022777, Nagoya Math. J. 1 (1950), 1–10 (German). MR0039759DOI10.1017/S0027763000022777
  22. Lemmermeyer F., 10.4064/aa-66-3-245-260, Acta Arith. 66 (1994), no. 3, 245–260. MR1276992DOI10.4064/aa-66-3-245-260
  23. Leonard P. A., Williams K. S., 10.4153/CMB-1982-027-0, Canad. Math. Bull. 25 (1982), no. 2, 200–206. MR0663614DOI10.4153/CMB-1982-027-0
  24. McCall T. M., Parry C. J., Ranalli R., 10.1006/jnth.1995.1079, J. Number Theory 53 (1995), no. 1, 88–99. MR1344833DOI10.1006/jnth.1995.1079
  25. Wada H., On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 201–209. MR0214565

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.