A class of multiplicative lattices

Tiberiu Dumitrescu; Mihai Epure

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 2, page 591-601
  • ISSN: 0011-4642

Abstract

top
We study the multiplicative lattices L which satisfy the condition a = ( a : ( a : b ) ) ( a : b ) for all a , b L . Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group or . A sharp lattice L localized at its maximal elements are totally ordered sharp lattices. The converse is true if L has finite character.

How to cite

top

Dumitrescu, Tiberiu, and Epure, Mihai. "A class of multiplicative lattices." Czechoslovak Mathematical Journal 71.2 (2021): 591-601. <http://eudml.org/doc/298202>.

@article{Dumitrescu2021,
abstract = {We study the multiplicative lattices $L$ which satisfy the condition $ a=(a :(a: b))(a:b) $ for all $a,b\in L$. Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group $\mathbb \{Z\}$ or $\mathbb \{R\}$. A sharp lattice $L$ localized at its maximal elements are totally ordered sharp lattices. The converse is true if $L$ has finite character.},
author = {Dumitrescu, Tiberiu, Epure, Mihai},
journal = {Czechoslovak Mathematical Journal},
keywords = {multiplicative lattice; Prüfer lattice; Prüfer integral domain},
language = {eng},
number = {2},
pages = {591-601},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A class of multiplicative lattices},
url = {http://eudml.org/doc/298202},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Dumitrescu, Tiberiu
AU - Epure, Mihai
TI - A class of multiplicative lattices
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 591
EP - 601
AB - We study the multiplicative lattices $L$ which satisfy the condition $ a=(a :(a: b))(a:b) $ for all $a,b\in L$. Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group $\mathbb {Z}$ or $\mathbb {R}$. A sharp lattice $L$ localized at its maximal elements are totally ordered sharp lattices. The converse is true if $L$ has finite character.
LA - eng
KW - multiplicative lattice; Prüfer lattice; Prüfer integral domain
UR - http://eudml.org/doc/298202
ER -

References

top
  1. Ahmad, Z., Dumitrescu, T., Epure, M., A Schreier domain type condition, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55 (2012), 241-247. (2012) Zbl1289.13001MR2987061
  2. Anderson, D. D., 10.1007/BF02485825, Algebra Univers. 6 (1976), 131-145. (1976) Zbl0355.06022MR0419310DOI10.1007/BF02485825
  3. Anderson, D. D., Jayaram, C., 10.21136/CMJ.1996.127274, Czech. Math. J. 46 (1996), 99-109. (1996) Zbl0898.06008MR1371692DOI10.21136/CMJ.1996.127274
  4. Dumitrescu, T., 10.1007/978-3-030-43416-8_6, Advances in Rings, Modules and Factorizations Springer Proceedings in Mathematics & Statistics 321. Springer, Cham (2020). (2020) Zbl07242233DOI10.1007/978-3-030-43416-8_6
  5. Engler, A. J., Prestel, A., 10.1007/3-540-30035-X, Springer Monographs in Mathematics. Springer, Berlin (2005). (2005) Zbl1128.12009MR2183496DOI10.1007/3-540-30035-X
  6. Gilmer, R., Multiplicative Ideal Theory, Pure and Applied Mathematics 12. Marcel Dekker, New York (1972). (1972) Zbl0248.13001MR0427289
  7. Halter-Koch, F., 10.1515/9783110801194, Pure and Applied Mathematics, Marcel Dekker 211. Marcel Dekker, New York (1998). (1998) Zbl0953.13001MR1828371DOI10.1515/9783110801194
  8. Jung, C. Y., Khalid, W., Nazeer, W., Tariq, T., Kang, S. M., 10.12732/ijpam.v115i2.12, Int. J. Pure Appl. Math. 115 (2017), 353-360. (2017) DOI10.12732/ijpam.v115i2.12
  9. Larsen, M. D., McCarthy, P. J., Multiplicative Theory of Ideals, Pure and Applied Mathematics 43. Academic Press, New York (1971). (1971) Zbl0237.13002MR0414528
  10. Olberding, B., 10.1006/jabr.1997.7406, J. Algebra 205 (1998), 480-504. (1998) Zbl0928.13013MR1632741DOI10.1006/jabr.1997.7406
  11. Olberding, B., Reinhart, A., 10.1007/s00012-019-0597-1, Algebra Univers. 80 (2019), Article ID 24, 29 pages. (2019) Zbl1420.13008MR3954364DOI10.1007/s00012-019-0597-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.