A class of multiplicative lattices
Tiberiu Dumitrescu; Mihai Epure
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 591-601
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Ahmad, Z., Dumitrescu, T., Epure, M., A Schreier domain type condition, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55 (2012), 241-247. (2012) Zbl1289.13001MR2987061
- Anderson, D. D., 10.1007/BF02485825, Algebra Univers. 6 (1976), 131-145. (1976) Zbl0355.06022MR0419310DOI10.1007/BF02485825
- Anderson, D. D., Jayaram, C., 10.21136/CMJ.1996.127274, Czech. Math. J. 46 (1996), 99-109. (1996) Zbl0898.06008MR1371692DOI10.21136/CMJ.1996.127274
- Dumitrescu, T., 10.1007/978-3-030-43416-8_6, Advances in Rings, Modules and Factorizations Springer Proceedings in Mathematics & Statistics 321. Springer, Cham (2020). (2020) Zbl07242233DOI10.1007/978-3-030-43416-8_6
- Engler, A. J., Prestel, A., 10.1007/3-540-30035-X, Springer Monographs in Mathematics. Springer, Berlin (2005). (2005) Zbl1128.12009MR2183496DOI10.1007/3-540-30035-X
- Gilmer, R., Multiplicative Ideal Theory, Pure and Applied Mathematics 12. Marcel Dekker, New York (1972). (1972) Zbl0248.13001MR0427289
- Halter-Koch, F., 10.1515/9783110801194, Pure and Applied Mathematics, Marcel Dekker 211. Marcel Dekker, New York (1998). (1998) Zbl0953.13001MR1828371DOI10.1515/9783110801194
- Jung, C. Y., Khalid, W., Nazeer, W., Tariq, T., Kang, S. M., 10.12732/ijpam.v115i2.12, Int. J. Pure Appl. Math. 115 (2017), 353-360. (2017) DOI10.12732/ijpam.v115i2.12
- Larsen, M. D., McCarthy, P. J., Multiplicative Theory of Ideals, Pure and Applied Mathematics 43. Academic Press, New York (1971). (1971) Zbl0237.13002MR0414528
- Olberding, B., 10.1006/jabr.1997.7406, J. Algebra 205 (1998), 480-504. (1998) Zbl0928.13013MR1632741DOI10.1006/jabr.1997.7406
- Olberding, B., Reinhart, A., 10.1007/s00012-019-0597-1, Algebra Univers. 80 (2019), Article ID 24, 29 pages. (2019) Zbl1420.13008MR3954364DOI10.1007/s00012-019-0597-1