A class of multiplicative lattices
Tiberiu Dumitrescu; Mihai Epure
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 591-601
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDumitrescu, Tiberiu, and Epure, Mihai. "A class of multiplicative lattices." Czechoslovak Mathematical Journal 71.2 (2021): 591-601. <http://eudml.org/doc/298202>.
@article{Dumitrescu2021,
abstract = {We study the multiplicative lattices $L$ which satisfy the condition $ a=(a :(a: b))(a:b) $ for all $a,b\in L$. Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group $\mathbb \{Z\}$ or $\mathbb \{R\}$. A sharp lattice $L$ localized at its maximal elements are totally ordered sharp lattices. The converse is true if $L$ has finite character.},
author = {Dumitrescu, Tiberiu, Epure, Mihai},
journal = {Czechoslovak Mathematical Journal},
keywords = {multiplicative lattice; Prüfer lattice; Prüfer integral domain},
language = {eng},
number = {2},
pages = {591-601},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A class of multiplicative lattices},
url = {http://eudml.org/doc/298202},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Dumitrescu, Tiberiu
AU - Epure, Mihai
TI - A class of multiplicative lattices
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 591
EP - 601
AB - We study the multiplicative lattices $L$ which satisfy the condition $ a=(a :(a: b))(a:b) $ for all $a,b\in L$. Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group $\mathbb {Z}$ or $\mathbb {R}$. A sharp lattice $L$ localized at its maximal elements are totally ordered sharp lattices. The converse is true if $L$ has finite character.
LA - eng
KW - multiplicative lattice; Prüfer lattice; Prüfer integral domain
UR - http://eudml.org/doc/298202
ER -
References
top- Ahmad, Z., Dumitrescu, T., Epure, M., A Schreier domain type condition, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 55 (2012), 241-247. (2012) Zbl1289.13001MR2987061
- Anderson, D. D., 10.1007/BF02485825, Algebra Univers. 6 (1976), 131-145. (1976) Zbl0355.06022MR0419310DOI10.1007/BF02485825
- Anderson, D. D., Jayaram, C., 10.21136/CMJ.1996.127274, Czech. Math. J. 46 (1996), 99-109. (1996) Zbl0898.06008MR1371692DOI10.21136/CMJ.1996.127274
- Dumitrescu, T., 10.1007/978-3-030-43416-8_6, Advances in Rings, Modules and Factorizations Springer Proceedings in Mathematics & Statistics 321. Springer, Cham (2020). (2020) Zbl07242233DOI10.1007/978-3-030-43416-8_6
- Engler, A. J., Prestel, A., 10.1007/3-540-30035-X, Springer Monographs in Mathematics. Springer, Berlin (2005). (2005) Zbl1128.12009MR2183496DOI10.1007/3-540-30035-X
- Gilmer, R., Multiplicative Ideal Theory, Pure and Applied Mathematics 12. Marcel Dekker, New York (1972). (1972) Zbl0248.13001MR0427289
- Halter-Koch, F., 10.1515/9783110801194, Pure and Applied Mathematics, Marcel Dekker 211. Marcel Dekker, New York (1998). (1998) Zbl0953.13001MR1828371DOI10.1515/9783110801194
- Jung, C. Y., Khalid, W., Nazeer, W., Tariq, T., Kang, S. M., 10.12732/ijpam.v115i2.12, Int. J. Pure Appl. Math. 115 (2017), 353-360. (2017) DOI10.12732/ijpam.v115i2.12
- Larsen, M. D., McCarthy, P. J., Multiplicative Theory of Ideals, Pure and Applied Mathematics 43. Academic Press, New York (1971). (1971) Zbl0237.13002MR0414528
- Olberding, B., 10.1006/jabr.1997.7406, J. Algebra 205 (1998), 480-504. (1998) Zbl0928.13013MR1632741DOI10.1006/jabr.1997.7406
- Olberding, B., Reinhart, A., 10.1007/s00012-019-0597-1, Algebra Univers. 80 (2019), Article ID 24, 29 pages. (2019) Zbl1420.13008MR3954364DOI10.1007/s00012-019-0597-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.