Oscillatory and non-oscillatory criteria for linear four-dimensional Hamiltonian systems

Gevorg A. Grigorian

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 3, page 289-304
  • ISSN: 0862-7959

Abstract

top
The Riccati equation method is used to study the oscillatory and non-oscillatory behavior of solutions of linear four-dimensional Hamiltonian systems. One oscillatory and three non-oscillatory criteria are proved. Examples of the obtained results are compared with some well known ones.

How to cite

top

Grigorian, Gevorg A.. "Oscillatory and non-oscillatory criteria for linear four-dimensional Hamiltonian systems." Mathematica Bohemica 146.3 (2021): 289-304. <http://eudml.org/doc/298203>.

@article{Grigorian2021,
abstract = {The Riccati equation method is used to study the oscillatory and non-oscillatory behavior of solutions of linear four-dimensional Hamiltonian systems. One oscillatory and three non-oscillatory criteria are proved. Examples of the obtained results are compared with some well known ones.},
author = {Grigorian, Gevorg A.},
journal = {Mathematica Bohemica},
keywords = {Riccati equation; oscillation; non-oscillation; conjoined (prepared; preferred) solution; Liouville's formula},
language = {eng},
number = {3},
pages = {289-304},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Oscillatory and non-oscillatory criteria for linear four-dimensional Hamiltonian systems},
url = {http://eudml.org/doc/298203},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Grigorian, Gevorg A.
TI - Oscillatory and non-oscillatory criteria for linear four-dimensional Hamiltonian systems
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 3
SP - 289
EP - 304
AB - The Riccati equation method is used to study the oscillatory and non-oscillatory behavior of solutions of linear four-dimensional Hamiltonian systems. One oscillatory and three non-oscillatory criteria are proved. Examples of the obtained results are compared with some well known ones.
LA - eng
KW - Riccati equation; oscillation; non-oscillation; conjoined (prepared; preferred) solution; Liouville's formula
UR - http://eudml.org/doc/298203
ER -

References

top
  1. Al-Dosary, K. I., Abdullah, H. K., Hussein, D., Short note on oscillation of matrix Hamiltonian systems, Yokohama Math. J. 50 (2003), 23-30. (2003) Zbl1062.34032MR2052143
  2. Butler, G. J., Erbe, L. H., Mingarelli, A. B., 10.1090/S0002-9947-1987-0896022-5, Trans. Am. Math. Soc. 303 (1987), 263-282. (1987) Zbl0648.34031MR0896022DOI10.1090/S0002-9947-1987-0896022-5
  3. Byers, R., Harris, B. J., Kwong, M. K., 10.1016/0022-0396(86)90117-8, J. Differ. Equations 61 (1986), 164-177. (1986) Zbl0609.34042MR0823400DOI10.1016/0022-0396(86)90117-8
  4. Chen, S., Zheng, Z., 10.1016/S0898-1221(03)90148-9, Comput. Math. Appl. 46 (2003), 855-862. (2003) Zbl1049.34038MR2020444DOI10.1016/S0898-1221(03)90148-9
  5. Erbe, L. H., Kong, Q., Ruan, S., 10.1090/S0002-9939-1993-1154244-0, Proc. Am. Math. Soc. 117 (1993), 957-962. (1993) Zbl0777.34024MR1154244DOI10.1090/S0002-9939-1993-1154244-0
  6. Grigoryan, G. A., 10.1134/S0012266111090023, Differ. Equ. 47 (2011), 1237-1252 translation from Differ. Uravn. 47 2011 1225-1240. (2011) Zbl1244.34051MR2918496DOI10.1134/S0012266111090023
  7. Grigoryan, G. A., 10.3103/S1066369X12110023, Russ. Math. 56 (2012), 17-30 translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2012 2012 20-35. (2012) Zbl1270.34062MR3137099DOI10.3103/S1066369X12110023
  8. Grigoryan, G. A., 10.1134/S0012266115030015, Differ. Equ. 51 (2015), 283-292 translation from Differ. Uravn. 51 2015 283-292. (2015) Zbl1344.34064MR3373201DOI10.1134/S0012266115030015
  9. Grigorian, G. A., 10.7494/OpMath.2016.36.5.589, Opusc. Math. 36 (2016), 589-601. (2016) Zbl1360.34075MR3520801DOI10.7494/OpMath.2016.36.5.589
  10. Grigorian, G. A., 10.1216/RMJ-2017-47-5-1497, Rocky Mt. J. Math. 47 (2017), 1497-1524. (2017) Zbl1378.34052MR3705762DOI10.1216/RMJ-2017-47-5-1497
  11. Grigorian, G. A., 10.5817/AM2018-4-189, Arch. Math., Brno 54 (2018), 189-203. (2018) Zbl06997350MR3887360DOI10.5817/AM2018-4-189
  12. Kumary, I. S., Umamaheswaram, S., 10.1006/jdeq.1999.3746, J. Differ. Equations 165 (2000), 174-198. (2000) Zbl0970.34025MR1771793DOI10.1006/jdeq.1999.3746
  13. Li, L., Meng, F., Zheng, Z., Oscillation results related to integral averaging technique for linear Hamiltonian systems, Dyn. Syst. Appl. 18 (2009), 725-736. (2009) Zbl1208.34040MR2562259
  14. Meng, F., Mingarelli, A. B., 10.1090/S0002-9939-02-06614-5, Proc. Am. Math. Soc. 131 (2003), 897-904. (2003) Zbl1008.37032MR1937428DOI10.1090/S0002-9939-02-06614-5
  15. Mingarelli, A. B., 10.1090/S0002-9939-1981-0614884-3, Proc. Am. Math. Soc. 82 (1981), 593-598. (1981) Zbl0487.34030MR0614884DOI10.1090/S0002-9939-1981-0614884-3
  16. Sun, Y. G., 10.1016/S0022-247X(03)00053-2, J. Math. Anal. Appl. 279 (2003), 651-658. (2003) Zbl1032.34032MR1974052DOI10.1016/S0022-247X(03)00053-2
  17. Wang, Q., 10.1007/PL00000448, Arch. Math. 76 (2001), 385-390. (2001) Zbl0989.34024MR1824258DOI10.1007/PL00000448
  18. Yang, Q., Mathsen, R., Zhu, S., 10.1016/S0022-0396(02)00172-9, J. Differ. Equations 190 (2003), 306-329. (2003) Zbl1032.34033MR1970965DOI10.1016/S0022-0396(02)00172-9
  19. Zheng, Z., 10.1016/j.jmaa.2006.10.034, J. Math. Anal. Appl. 332 (2007), 236-245. (2007) Zbl1124.34021MR2319657DOI10.1016/j.jmaa.2006.10.034
  20. Zheng, Z., Zhu, S., Hartman type oscillation criteria for linear matrix Hamiltonian systems, Dyn. Syst. Appl. 17 (2008), 85-96. (2008) Zbl1203.34059MR2433892

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.