Algebraic properties of Toeplitz operators on weighted Bergman spaces
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 3, page 823-836
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAppuhamy, Amila. "Algebraic properties of Toeplitz operators on weighted Bergman spaces." Czechoslovak Mathematical Journal 71.3 (2021): 823-836. <http://eudml.org/doc/298211>.
@article{Appuhamy2021,
abstract = {We study algebraic properties of two Toeplitz operators on the weighted Bergman space on the unit disk with harmonic symbols. In particular the product property and commutative property are discussed. Further we apply our results to solve a compactness problem of the product of two Hankel operators on the weighted Bergman space on the unit bidisk.},
author = {Appuhamy, Amila},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bergman space; Toeplitz operator; Hankel operator; Berezin transform},
language = {eng},
number = {3},
pages = {823-836},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Algebraic properties of Toeplitz operators on weighted Bergman spaces},
url = {http://eudml.org/doc/298211},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Appuhamy, Amila
TI - Algebraic properties of Toeplitz operators on weighted Bergman spaces
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 823
EP - 836
AB - We study algebraic properties of two Toeplitz operators on the weighted Bergman space on the unit disk with harmonic symbols. In particular the product property and commutative property are discussed. Further we apply our results to solve a compactness problem of the product of two Hankel operators on the weighted Bergman space on the unit bidisk.
LA - eng
KW - Bergman space; Toeplitz operator; Hankel operator; Berezin transform
UR - http://eudml.org/doc/298211
ER -
References
top- Ahern, P., 10.1016/j.jfa.2003.08.007, J. Funct. Anal. 215 (2004), 206-216. (2004) Zbl1088.47014MR2085115DOI10.1016/j.jfa.2003.08.007
- Ahern, P., Čučković, Ž., 10.1006/jfan.2001.3811, J. Funct. Anal. 187 (2001), 200-210. (2001) Zbl0996.47037MR1867348DOI10.1006/jfan.2001.3811
- Ahern, P., Flores, M., Rudin, W., 10.1006/jfan.1993.1018, J. Funct. Anal. 111 (1993), 380-397. (1993) Zbl0771.32006MR1203459DOI10.1006/jfan.1993.1018
- Axler, S., Čučković, Ž., 10.1007/BF01194925, Integral Equations Oper. Theory 14 (1991), 1-12. (1991) Zbl0733.47027MR1079815DOI10.1007/BF01194925
- Axler, S., Čučković, Ž., Rao, N. V., 10.1090/S0002-9939-99-05436-2, Proc. Am. Math. Soc. 128 (2000), 1951-1953. (2000) Zbl0947.47023MR1694299DOI10.1090/S0002-9939-99-05436-2
- Brown, A., Halmos, P. R., 10.1515/crll.1964.213.89, J. Reine Angew. Math. 213 (1963/64), 89-102. (1963) Zbl0116.32501MR0160136DOI10.1515/crll.1964.213.89
- Choe, B. R., Lee, Y. J., Nam, K., Zheng, D., 10.1007/s00208-006-0034-6, Math. Ann. 337 (2007), 295-316. (2007) Zbl1122.47022MR2262785DOI10.1007/s00208-006-0034-6
- Čučković, Ž., Li, B., 10.1007/s11785-010-0051-z, Complex Anal. Oper. Theory 6 (2012), 189-218. (2012) Zbl1303.47036MR2886615DOI10.1007/s11785-010-0051-z
- Čučković, Ž., Rao, N. V., 10.1006/jfan.1997.3204, J. Funct. Anal. 154 (1998), 195-214. (1998) Zbl0936.47015MR1616532DOI10.1006/jfan.1997.3204
- Čučković, Ž., Şahutoğlu, S., 10.1016/j.jmaa.2010.05.027, J. Math. Anal. Appl. 371 (2010), 341-346. (2010) Zbl1200.32001MR2661011DOI10.1016/j.jmaa.2010.05.027
- Rao, N. V., Range of Berezin transform, Available at https://arxiv.org/abs/1003.3939 (2010), 10 pages. (2010)
- Zhu, K., 10.1090/surv/138, Mathematical Surveys and Monographs 138. American Mathematical Society, Providence (2007). (2007) Zbl1123.47001MR2311536DOI10.1090/surv/138
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.