On a Kleinecke-Shirokov theorem

Vasile Lauric

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 3, page 817-822
  • ISSN: 0011-4642

Abstract

top
We prove that for normal operators N 1 , N 2 ( ) , the generalized commutator [ N 1 , N 2 ; X ] approaches zero when [ N 1 , N 2 ; [ N 1 , N 2 ; X ] ] tends to zero in the norm of the Schatten-von Neumann class 𝒞 p with p > 1 and X varies in a bounded set of such a class.

How to cite

top

Lauric, Vasile. "On a Kleinecke-Shirokov theorem." Czechoslovak Mathematical Journal 71.3 (2021): 817-822. <http://eudml.org/doc/298213>.

@article{Lauric2021,
abstract = {We prove that for normal operators $N_1, N_2\in \mathcal \{L(H)\},$ the generalized commutator $[N_1, N_2; X]$ approaches zero when $[N_1,N_2; [N_1, N_2; X]]$ tends to zero in the norm of the Schatten-von Neumann class $\mathcal \{C\}_p$ with $p>1$ and $X$ varies in a bounded set of such a class.},
author = {Lauric, Vasile},
journal = {Czechoslovak Mathematical Journal},
keywords = {Kleinecke-Shirokov theorem; generalized commutator},
language = {eng},
number = {3},
pages = {817-822},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a Kleinecke-Shirokov theorem},
url = {http://eudml.org/doc/298213},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Lauric, Vasile
TI - On a Kleinecke-Shirokov theorem
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 817
EP - 822
AB - We prove that for normal operators $N_1, N_2\in \mathcal {L(H)},$ the generalized commutator $[N_1, N_2; X]$ approaches zero when $[N_1,N_2; [N_1, N_2; X]]$ tends to zero in the norm of the Schatten-von Neumann class $\mathcal {C}_p$ with $p>1$ and $X$ varies in a bounded set of such a class.
LA - eng
KW - Kleinecke-Shirokov theorem; generalized commutator
UR - http://eudml.org/doc/298213
ER -

References

top
  1. Abdessemed, A., Davies, E. B., 10.1112/jlms/s2-39.2.299, J. Lond. Math. Soc., II. Ser. 39 (1989), 299-308. (1989) Zbl0692.47009MR0991663DOI10.1112/jlms/s2-39.2.299
  2. Ackermans, S. T. M., Eijndhoven, S. J. L. van, Martens, F. J. L., 10.1016/S1385-7258(83)80015-8, Indag. Math. 45 (1983), 385-391. (1983) Zbl0573.47024MR0731821DOI10.1016/S1385-7258(83)80015-8
  3. Kleinecke, D. C., 10.1090/S0002-9939-1957-0087914-4, Proc. Am. Math. Soc. 8 (1957), 535-536. (1957) Zbl0079.12904MR0087914DOI10.1090/S0002-9939-1957-0087914-4
  4. Shirokov, F. V., Proof of a conjecutre of Kaplansky, Usp. Mat. Nauk 11 (1956), 167-168 Russian. (1956) Zbl0070.34201MR0087913
  5. Shulman, V., 10.1112/blms/28.4.385, Bull. Lond. Math. Soc. 28 (1996), 385-392. (1996) Zbl0892.47007MR1384827DOI10.1112/blms/28.4.385
  6. Shulman, V., Turowska, L., 10.1515/CRELLE.2006.007, J. Reine Angew. Math. 590 (2006), 143-187. (2006) Zbl1094.47054MR2208132DOI10.1515/CRELLE.2006.007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.