On a Kleinecke-Shirokov theorem
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 3, page 817-822
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLauric, Vasile. "On a Kleinecke-Shirokov theorem." Czechoslovak Mathematical Journal 71.3 (2021): 817-822. <http://eudml.org/doc/298213>.
@article{Lauric2021,
abstract = {We prove that for normal operators $N_1, N_2\in \mathcal \{L(H)\},$ the generalized commutator $[N_1, N_2; X]$ approaches zero when $[N_1,N_2; [N_1, N_2; X]]$ tends to zero in the norm of the Schatten-von Neumann class $\mathcal \{C\}_p$ with $p>1$ and $X$ varies in a bounded set of such a class.},
author = {Lauric, Vasile},
journal = {Czechoslovak Mathematical Journal},
keywords = {Kleinecke-Shirokov theorem; generalized commutator},
language = {eng},
number = {3},
pages = {817-822},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a Kleinecke-Shirokov theorem},
url = {http://eudml.org/doc/298213},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Lauric, Vasile
TI - On a Kleinecke-Shirokov theorem
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 3
SP - 817
EP - 822
AB - We prove that for normal operators $N_1, N_2\in \mathcal {L(H)},$ the generalized commutator $[N_1, N_2; X]$ approaches zero when $[N_1,N_2; [N_1, N_2; X]]$ tends to zero in the norm of the Schatten-von Neumann class $\mathcal {C}_p$ with $p>1$ and $X$ varies in a bounded set of such a class.
LA - eng
KW - Kleinecke-Shirokov theorem; generalized commutator
UR - http://eudml.org/doc/298213
ER -
References
top- Abdessemed, A., Davies, E. B., 10.1112/jlms/s2-39.2.299, J. Lond. Math. Soc., II. Ser. 39 (1989), 299-308. (1989) Zbl0692.47009MR0991663DOI10.1112/jlms/s2-39.2.299
- Ackermans, S. T. M., Eijndhoven, S. J. L. van, Martens, F. J. L., 10.1016/S1385-7258(83)80015-8, Indag. Math. 45 (1983), 385-391. (1983) Zbl0573.47024MR0731821DOI10.1016/S1385-7258(83)80015-8
- Kleinecke, D. C., 10.1090/S0002-9939-1957-0087914-4, Proc. Am. Math. Soc. 8 (1957), 535-536. (1957) Zbl0079.12904MR0087914DOI10.1090/S0002-9939-1957-0087914-4
- Shirokov, F. V., Proof of a conjecutre of Kaplansky, Usp. Mat. Nauk 11 (1956), 167-168 Russian. (1956) Zbl0070.34201MR0087913
- Shulman, V., 10.1112/blms/28.4.385, Bull. Lond. Math. Soc. 28 (1996), 385-392. (1996) Zbl0892.47007MR1384827DOI10.1112/blms/28.4.385
- Shulman, V., Turowska, L., 10.1515/CRELLE.2006.007, J. Reine Angew. Math. 590 (2006), 143-187. (2006) Zbl1094.47054MR2208132DOI10.1515/CRELLE.2006.007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.