The Ribes-Zalesskii property of some one relator groups
Gilbert Mantika; Narcisse Temate-Tangang; Daniel Tieudjo
Archivum Mathematicum (2022)
- Volume: 058, Issue: 1, page 35-47
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMantika, Gilbert, Temate-Tangang, Narcisse, and Tieudjo, Daniel. "The Ribes-Zalesskii property of some one relator groups." Archivum Mathematicum 058.1 (2022): 35-47. <http://eudml.org/doc/298251>.
@article{Mantika2022,
abstract = {The profinite topology on any abstract group $G$, is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group $G$ has the Ribes-Zalesskii property of rank $k$, or is RZ$_\{k\}$ with $k$ a natural number, if any product $H_\{1\} H_\{2\} \cdots H_\{k\}$ of finitely generated subgroups $H_\{1\}, H_\{2\}, \cdots , H_\{k\}$ is closed in the profinite topology on $G$. And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ$_\{k\}$ for any natural number $k$. In this paper we characterize groups which are RZ$_\{2\}$. Consequently, we obtain condition under which a free product with amalgamation of two RZ$_\{2\}$ groups is RZ$_\{2\}$. After observing that the Baumslag-Solitar groups $BS (m, n)$ are RZ$_\{2\}$ and clearly RZ if $m= n$, we establish some suitable properties on the RZ$_\{2\}$ property for the case when $m= -n$. Finally, since any group $BS (m, n)$ can be viewed as a HNN-extension, then we point out the Ribes-Zalesskii property of rank two on some HNN-extensions.},
author = {Mantika, Gilbert, Temate-Tangang, Narcisse, Tieudjo, Daniel},
journal = {Archivum Mathematicum},
keywords = {profinite topology; HNN-extension; Ribes-Zalesskii property of rank $k$; Baumslag-Solitar groups},
language = {eng},
number = {1},
pages = {35-47},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The Ribes-Zalesskii property of some one relator groups},
url = {http://eudml.org/doc/298251},
volume = {058},
year = {2022},
}
TY - JOUR
AU - Mantika, Gilbert
AU - Temate-Tangang, Narcisse
AU - Tieudjo, Daniel
TI - The Ribes-Zalesskii property of some one relator groups
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 1
SP - 35
EP - 47
AB - The profinite topology on any abstract group $G$, is one such that the fundamental system of neighborhoods of the identity is given by all its subgroups of finite index. We say that a group $G$ has the Ribes-Zalesskii property of rank $k$, or is RZ$_{k}$ with $k$ a natural number, if any product $H_{1} H_{2} \cdots H_{k}$ of finitely generated subgroups $H_{1}, H_{2}, \cdots , H_{k}$ is closed in the profinite topology on $G$. And a group is said to have the Ribes-Zalesskii property or is RZ if it is RZ$_{k}$ for any natural number $k$. In this paper we characterize groups which are RZ$_{2}$. Consequently, we obtain condition under which a free product with amalgamation of two RZ$_{2}$ groups is RZ$_{2}$. After observing that the Baumslag-Solitar groups $BS (m, n)$ are RZ$_{2}$ and clearly RZ if $m= n$, we establish some suitable properties on the RZ$_{2}$ property for the case when $m= -n$. Finally, since any group $BS (m, n)$ can be viewed as a HNN-extension, then we point out the Ribes-Zalesskii property of rank two on some HNN-extensions.
LA - eng
KW - profinite topology; HNN-extension; Ribes-Zalesskii property of rank $k$; Baumslag-Solitar groups
UR - http://eudml.org/doc/298251
ER -
References
top- Allenby, R., Doniz, D., 10.1090/S0002-9939-96-03567-8, Proc. Amer. Math. Soc. 124 (4) (1996), 1003–1005. (1996) DOI10.1090/S0002-9939-96-03567-8
- Baumslag, B., Tretkoff, M., 10.1080/00927877808822240, Comm. Algebra 6 (1978), 179–194. (1978) DOI10.1080/00927877808822240
- Baumslag, G., 10.1090/S0002-9947-1963-0144949-8, Trans. Amer. Math. Soc. 106 (1963), 193–209. (1963) DOI10.1090/S0002-9947-1963-0144949-8
- Baumslag, G., Solitar, D., Some two-generator one-relator non-Hopfien groups, Bull. Amer. Math. Soc. 38 (1962), 199–201. (1962)
- Cohen, D., Combinatorial groups theory: a topological approach, London Math. Soc. Stud. Texts, 1989, ISBN: 0-521-34133-7; 0-521-34936-2. (1989)
- Coulbois, T., Propriètés de Ribes-Zalesskii, topologie profinie, produit libre et généralisations, Ph.D. thesis, Universite Paris vii-Denis Diderot, 2000. (2000)
- Coulbois, T., 10.1142/S0218196701000449, Internat. J. Algebra Comput. 14 (2001), 171–184. (2001) MR1829049DOI10.1142/S0218196701000449
- Doucha, M., Malicki, M., Generic representations of countable groups, Trans. Amer. Math. Soc. 164 (2019), 105–114. (2019) MR4029696
- Hall, M., 10.1090/S0002-9947-1949-0032642-4, Trans. Amer. Math. Soc. 67 (1949), 421–432. (1949) DOI10.1090/S0002-9947-1949-0032642-4
- Hall, M., 10.2307/1969513, Ann. of Math. 52 (1950), 127–139. (1950) DOI10.2307/1969513
- Hall, P., On the finiteness on certain soluble groups, Proc. London Math. Soc. 164 (1959), 595–622. (1959)
- Hirsch, K., 10.1112/plms/s2-49.3.184, Proc. London Math. Soc. 49 (1946), 184–194. (1946) DOI10.1112/plms/s2-49.3.184
- Lennox, J.C., Wilson, J.S., 10.1007/BF01222760, Arch. Math. (Basel) 33 (1979), 305–309. (1979) DOI10.1007/BF01222760
- Magnus, W., Karass, A., Solitar, D., Combinatorial Group Theory: Presentations of Groups in Term of Generators and Relations, Interscience Publishers (John Wiley and Sons), New York, 1966. (1966)
- Mal’cev, A., On homomorphisms onto finite groups, Ivanov. Gos. Ped. Inst. Ucen. Zap. 18 (1958), 49–60. (1958)
- Meskin, S., 10.1090/S0002-9947-1972-0285589-5, Trans. Amer. Math. Soc. 164 (1972), 105–114. (1972) DOI10.1090/S0002-9947-1972-0285589-5
- Metaftsis, V., Raptis, E., 10.1006/jabr.2001.8910, J. Algebra 245 (2001), 42–49. (2001) MR1868182DOI10.1006/jabr.2001.8910
- Moldavanskii, D., Uskova, A., On the finitely separability of subgroups of generalized free products, Arxiv: 1308.3955.[mathGR], (2013).
- Neumann, B.H., 10.1098/rsta.1954.0007, Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503–554. (1954) DOI10.1098/rsta.1954.0007
- Pin, J.-E., Reutenaeur, C., 10.1112/blms/23.4.356, Bull. London Math. Soc. 23 (1991), 356–362. (1991) DOI10.1112/blms/23.4.356
- Ribes, L., Profinite graphs and groups, Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, Springer, Cham, 2017, ISBN: 978-3-319-61041-2; 978-3-319-61199-0. (2017) MR3677322
- Ribes, L., Zalesskii, P.A., 10.1142/S0218196704001992, Internat. J. Algebra Comput. 14 (2004), 751–772. (2004) MR2104779DOI10.1142/S0218196704001992
- Rips, E., 10.1007/BF02807222, Israel J. Math. Vol. 70 (1) (1990), 104–110. (1990) DOI10.1007/BF02807222
- Romanovskii, N.S., On the residual finiteness of free products with respect to subgroups, Izv. Akad. Nauk SSSR Ser. Math. 33 (1969), 1324–1329. (1969)
- Rosendal, C., 10.2178/jsl/1318338850, J. Symbolic Logic 76 (4) (2011), 1297–1306. (2011) MR2895386DOI10.2178/jsl/1318338850
- Rosendal, C., 10.2178/jsl/1318338851, J. Symbolic Logic 76 (4) (2011), 1307–1321. (2011) MR2895397DOI10.2178/jsl/1318338851
- Shihong, You, 10.1112/S0024610796004425, J. London Math. Soc.(2) 56 (1997), 91–103. (1997) DOI10.1112/S0024610796004425
- Stebe, P., 10.1090/S0002-9947-1971-0274597-5, Trans. Amer. Math. Soc. 156 (1971), 119–129. (1971) DOI10.1090/S0002-9947-1971-0274597-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.