Engel BCI-algebras: an application of left and right commutators
Ardavan Najafi; Arsham Borumand Saeid
Mathematica Bohemica (2021)
- Volume: 146, Issue: 2, page 133-150
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topNajafi, Ardavan, and Borumand Saeid, Arsham. "Engel BCI-algebras: an application of left and right commutators." Mathematica Bohemica 146.2 (2021): 133-150. <http://eudml.org/doc/298255>.
@article{Najafi2021,
abstract = {We introduce Engel elements in a BCI-algebra by using left and right normed commutators, and some properties of these elements are studied. The notion of $n$-Engel BCI-algebra as a natural generalization of commutative BCI-algebras is introduced, and we discuss Engel BCI-algebra, which is defined by left and right normed commutators. In particular, we prove that any nilpotent BCI-algebra of type $2$ is an Engel BCI-algebra, but solvable BCI-algebras are not Engel, generally. Also, it is proved that $1$-Engel BCI-algebras are exactly the commutative BCI-algebras.},
author = {Najafi, Ardavan, Borumand Saeid, Arsham},
journal = {Mathematica Bohemica},
keywords = {(left and right) Engel element; commutator; Engel BCI-algebra},
language = {eng},
number = {2},
pages = {133-150},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Engel BCI-algebras: an application of left and right commutators},
url = {http://eudml.org/doc/298255},
volume = {146},
year = {2021},
}
TY - JOUR
AU - Najafi, Ardavan
AU - Borumand Saeid, Arsham
TI - Engel BCI-algebras: an application of left and right commutators
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 2
SP - 133
EP - 150
AB - We introduce Engel elements in a BCI-algebra by using left and right normed commutators, and some properties of these elements are studied. The notion of $n$-Engel BCI-algebra as a natural generalization of commutative BCI-algebras is introduced, and we discuss Engel BCI-algebra, which is defined by left and right normed commutators. In particular, we prove that any nilpotent BCI-algebra of type $2$ is an Engel BCI-algebra, but solvable BCI-algebras are not Engel, generally. Also, it is proved that $1$-Engel BCI-algebras are exactly the commutative BCI-algebras.
LA - eng
KW - (left and right) Engel element; commutator; Engel BCI-algebra
UR - http://eudml.org/doc/298255
ER -
References
top- Abdollahi, A., 10.1016/j.jalgebra.2007.09.007, J. Algebra 318 (2007), 680-691. (2007) Zbl1136.20034MR2371966DOI10.1016/j.jalgebra.2007.09.007
- Abdollahi, A., 10.1017/CBO9780511842467.005, Groups St. Andrews 2009 in Bath. Vol. I. London Mathematical Society Lecture Note Series 387. Cambridge University Press, Cambridge (2011), 94-117 C. M. Campbell, et al. (2011) Zbl1235.20039MR2858851DOI10.1017/CBO9780511842467.005
- Dudek, W. A., 10.1515/dema-1988-0207, Demonstr. Math. 21 (1988), 369-376. (1988) Zbl0655.06011MR0981689DOI10.1515/dema-1988-0207
- Dudek, W. A., 10.4134/CKMS.2016.31.2.261, Commun. Korean Math. Soc. 31 (2016), 261-262. (2016) Zbl1339.06022MR3498234DOI10.4134/CKMS.2016.31.2.261
- Huang, Y., BCI-Algebras, Science Press, Beijing (2006). (2006)
- Iséki, K., 10.3792/pja/1195522171, Proc. Japan Acad. 42 (1966), 26-29. (1966) Zbl0207.29304MR0202571DOI10.3792/pja/1195522171
- Iséki, K., On BCI-algebras, Math. Semin. Notes, Kobe Univ. 8 (1980), 125-130. (1980) Zbl0434.03049MR0590171
- Lei, T., Xi, C., -radical in BCI-algebras, Math. Jap. 30 (1985), 511-517. (1985) Zbl0594.03047MR0812002
- Najafi, A., 10.12988/pms.2013.13004, Pure Math. Sci. 2 (2013), 29-32. (2013) Zbl1305.06023DOI10.12988/pms.2013.13004
- Najafi, A., Saeid, A. Borumand, Solvable BCK-algebras, Çankaya Univ. J. Sci. Eng. 11 (2014), 19-28. (2014)
- Najafi, A., Saeid, A. Borumand, Eslami, E., 10.3233/IFS-162148, J. Intell. Fuzzy Syst. 31 (2016), 357-366. (2016) Zbl1367.06009DOI10.3233/IFS-162148
- Najafi, A., Saeid, A. Borumand, Eslami, E., Centralizers of BCI-algebras, (to appear) in Miskolc Math. Notes.
- Najafi, A., Eslami, E., Saeid, A. Borumand, A new type of nilpotent BCI-algebras, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 64 (2018), 309-326 9999MR99999 3896549 . (2018) MR3896549
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.