Generalized spectral perturbation and the boundary spectrum
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 603-621
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMouton, Sonja. "Generalized spectral perturbation and the boundary spectrum." Czechoslovak Mathematical Journal 71.2 (2021): 603-621. <http://eudml.org/doc/298257>.
@article{Mouton2021,
abstract = {By considering arbitrary mappings $\omega $ from a Banach algebra $A$ into the set of all nonempty, compact subsets of the complex plane such that for all $a \in A$, the set $\omega (a)$ lies between the boundary and connected hull of the exponential spectrum of $a$, we create a general framework in which to generalize a number of results involving spectra such as the exponential and singular spectra. In particular, we discover a number of new properties of the boundary spectrum.},
author = {Mouton, Sonja},
journal = {Czechoslovak Mathematical Journal},
keywords = {exponential spectrum; singular spectrum; boundary spectrum; boundary and hull; (strong) Riesz property; Mobius spectrum},
language = {eng},
number = {2},
pages = {603-621},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized spectral perturbation and the boundary spectrum},
url = {http://eudml.org/doc/298257},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Mouton, Sonja
TI - Generalized spectral perturbation and the boundary spectrum
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 603
EP - 621
AB - By considering arbitrary mappings $\omega $ from a Banach algebra $A$ into the set of all nonempty, compact subsets of the complex plane such that for all $a \in A$, the set $\omega (a)$ lies between the boundary and connected hull of the exponential spectrum of $a$, we create a general framework in which to generalize a number of results involving spectra such as the exponential and singular spectra. In particular, we discover a number of new properties of the boundary spectrum.
LA - eng
KW - exponential spectrum; singular spectrum; boundary spectrum; boundary and hull; (strong) Riesz property; Mobius spectrum
UR - http://eudml.org/doc/298257
ER -
References
top- Aupetit, B., 10.1007/BFb0064204, Lecture Notes in Mathematics 735. Springer, Berlin (1979), French. (1979) Zbl0409.46054MR0549769DOI10.1007/BFb0064204
- Aupetit, B., 10.1007/978-1-4612-3048-9, Universitext. Springer, New York (1991). (1991) Zbl0715.46023MR1083349DOI10.1007/978-1-4612-3048-9
- Burlando, L., 10.1155/S0161171293001036, Int. J. Math. Sci. 16 (1993), 819-822. (1993) Zbl0808.46065MR1234831DOI10.1155/S0161171293001036
- Conway, J. B., 10.1007/978-1-4757-4383-8, Graduate Texts in Mathematics 96. Springer, New York (2010). (2010) Zbl0706.46003MR1070713DOI10.1007/978-1-4757-4383-8
- Groenewald, L., Harte, R. E., Raubenheimer, H., 10.1080/16073606.1989.9632195, Quaest. Math. 12 (1989), 439-446. (1989) Zbl0705.46022MR1021942DOI10.1080/16073606.1989.9632195
- Groenewald, L., Raubenheimer, H., 10.1080/16073606.1988.9632154, Quaest. Math. 11 (1988), 399-408. (1988) Zbl0673.46022MR0969558DOI10.1080/16073606.1988.9632154
- Harte, R. E., 10.1090/S0002-9939-1976-0407603-5, Proc. Am. Math. Soc. 58 (1976), 114-118. (1976) Zbl0338.46043MR0407603DOI10.1090/S0002-9939-1976-0407603-5
- Harte, R. E., Invertibility and Singularity for Bounded Linear Operators, Pure and Applied Mathematics 109. Marcel Dekker, New York (1988). (1988) Zbl0636.47001MR0920812
- Harte, R. E., Wickstead, A. W., Boundaries, hulls and spectral mapping theorems, Proc. R. Ir. Acad., Sect. A 81 (1981), 201-208. (1981) Zbl0489.46041MR0654819
- Lindeboom, L., Raubenheimer, H., A note on the singular spectrum, Extr. Math. 13 (1998), 349-357. (1998) Zbl1054.46510MR1695568
- Lindeboom, L., Raubenheimer, H., 10.1216/rmjm/1181071617, Rocky Mt. J. Math. 29 (1999), 957-970. (1999) Zbl0969.46038MR1733077DOI10.1216/rmjm/1181071617
- Lindeboom, L., Raubenheimer, H., 10.1023/A:1021727829750, Czech. Math. J. 52 (2002), 565-574. (2002) Zbl1010.46045MR1923262DOI10.1023/A:1021727829750
- Mouton, H. du T., 10.1080/16073606.1994.9632217, Quaest. Math. 17 (1994), 59-66. (1994) Zbl0818.46053MR1276008DOI10.1080/16073606.1994.9632217
- Mouton, H. du T., Mouton, S., Raubenheimer, H., 10.2989/16073606.2011.622893, Quaest. Math. 34 (2011), 341-359. (2011) Zbl1274.46095MR2844530DOI10.2989/16073606.2011.622893
- Mouton, H. du T., Raubenheimer, H., 10.1080/16073606.1991.9631656, Quaest. Math. 14 (1991), 371-382. (1991) Zbl0763.46035MR1143042DOI10.1080/16073606.1991.9631656
- Mouton, S., 10.1017/S0004972700035681, Bull. Aust. Math. Soc. 74 (2006), 239-246. (2006) Zbl1113.46044MR2260492DOI10.1017/S0004972700035681
- Mouton, S., 10.1215/ijm/1286212914, Ill. J. Math. 53 (2009), 757-767. (2009) Zbl1210.46033MR2727353DOI10.1215/ijm/1286212914
- Müller, V., 10.1007/978-3-0348-7788-6, Operator Theory: Advances and Applications 139. Birkhäuser, Basel (2007). (2007) Zbl1208.47001MR2355630DOI10.1007/978-3-0348-7788-6
- Raubenheimer, H., Swartz, A., 10.2989/16073606.2018.1501439, Quaest. Math. 42 (2019), 811-822. (2019) Zbl1439.46039MR3989360DOI10.2989/16073606.2018.1501439
- Raubenheimer, H., Swartz, A., 10.1216/RMJ-2019-49-8-2747, Rocky Mt. J. Math. 49 (2019), 2747-2754. (2019) Zbl07163196MR4058347DOI10.1216/RMJ-2019-49-8-2747
- Taylor, A. E., Lay, D. C., Introduction to Functional Analysis, John Wiley & Sons, New York (1980). (1980) Zbl0501.46003MR0564653
- Živkovič-Zlatanovič, S. Č., Harte, R. E., 10.2989/16073606.2015.1026558, Quaest. Math. 38 (2015), 573-586. (2015) Zbl06696038MR3403668DOI10.2989/16073606.2015.1026558
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.