Sofic groups are not locally embeddable into finite Moufang loops

Heghine Ghumashyan; Jaroslav Guričan

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 1, page 11-18
  • ISSN: 0862-7959

Abstract

top
We shall show that there exist sofic groups which are not locally embeddable into finite Moufang loops. These groups serve as counterexamples to a problem and two conjectures formulated in the paper by M. Vodička, P. Zlatoš (2019).

How to cite

top

Ghumashyan, Heghine, and Guričan, Jaroslav. "Sofic groups are not locally embeddable into finite Moufang loops." Mathematica Bohemica 147.1 (2022): 11-18. <http://eudml.org/doc/298258>.

@article{Ghumashyan2022,
abstract = {We shall show that there exist sofic groups which are not locally embeddable into finite Moufang loops. These groups serve as counterexamples to a problem and two conjectures formulated in the paper by M. Vodička, P. Zlatoš (2019).},
author = {Ghumashyan, Heghine, Guričan, Jaroslav},
journal = {Mathematica Bohemica},
keywords = {group; diassociative IP loop; Moufang loop; finite embeddability property; local embeddability},
language = {eng},
number = {1},
pages = {11-18},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sofic groups are not locally embeddable into finite Moufang loops},
url = {http://eudml.org/doc/298258},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Ghumashyan, Heghine
AU - Guričan, Jaroslav
TI - Sofic groups are not locally embeddable into finite Moufang loops
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 11
EP - 18
AB - We shall show that there exist sofic groups which are not locally embeddable into finite Moufang loops. These groups serve as counterexamples to a problem and two conjectures formulated in the paper by M. Vodička, P. Zlatoš (2019).
LA - eng
KW - group; diassociative IP loop; Moufang loop; finite embeddability property; local embeddability
UR - http://eudml.org/doc/298258
ER -

References

top
  1. Baumslag, G., Solitar, D., 10.1090/S0002-9904-1962-10745-9, Bull. Am. Math. Soc. 68 (1962), 199-201. (1962) Zbl0108.02702MR0142635DOI10.1090/S0002-9904-1962-10745-9
  2. Ceccherini-Silberstein, T., Coornaert, M., 10.1007/978-3-642-14034-1, Springer Monographs in Mathematics. Springer, Berlin (2010). (2010) Zbl1218.37004MR2683112DOI10.1007/978-3-642-14034-1
  3. Collins, B., Dykema, K. J., Free products of sofic groups with amalgamation over monotileably amenable groups, Münster J. Math. 4 (2011), 101-118. (2011) Zbl1242.43003MR2869256
  4. Drápal, A., 10.1090/S0002-9939-2010-10501-4, Proc. Am. Math. Soc. 139 (2011), 93-98. (2011) Zbl1215.20059MR2729073DOI10.1090/S0002-9939-2010-10501-4
  5. Glebsky, L. Y., Gordon, Y. I., 10.1007/s10958-007-0446-1, J. Math. Sci. 140 (2007), 369-375. (2007) Zbl1159.43300MR2183215DOI10.1007/s10958-007-0446-1
  6. Henkin, L., 10.2307/2268482, J. Symb. Log. 21 (1956), 28-32. (1956) Zbl0071.00701MR0075895DOI10.2307/2268482
  7. Higman, G., Neumann, B. H., Neumann, H., 10.1112/jlms/s1-24.4.247, J. Lond. Math. Soc. 24 (1949), 247-254. (1949) Zbl0034.30101MR0032641DOI10.1112/jlms/s1-24.4.247
  8. Lyndon, R. C., Schupp, P. E., 10.1007/978-3-642-61896-3, Classics in Mathematics. Springer, Berlin (2001). (2001) Zbl0997.20037MR1812024DOI10.1007/978-3-642-61896-3
  9. Magnus, W., Karrass, A., Solitar, D., Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Dover Books on Mathematics. Dover Publications, Mineola (2004). (2004) Zbl1130.20307MR2109550
  10. Mal'tsev, A. I., On a general method for obtaining local theorems in group theory, Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Fak. 1 (1941), 3-9 Russian. (1941) MR0075939
  11. Mal'tsev, A. I., 10.1090/trans2/119, Twelve Papers in Algebra American Mathematical Society Translations: Series 2, 119. American Mathematical Society (1983), 67-79. (1983) Zbl0511.20026DOI10.1090/trans2/119
  12. Meskin, S., 10.2307/1995962, Trans. Am. Math. Soc. 164 (1972), 105-114. (1972) Zbl0245.20028MR285589DOI10.2307/1995962
  13. Pflugfelder, H. O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics 7. Heldermann Verlag, Berlin (1990). (1990) Zbl0715.20043MR1125767
  14. Vershik, A. M., Gordon, E. I., Groups that are locally embeddable in the class of finite groups, St. Petersbg. Math. J. 9 (1998), 49-67. (1998) Zbl0898.20016MR1458419
  15. Vodička, M., Zlatoš, P., 10.26493/1855-3974.1884.5cb, Ars Math. Contemp. 17 (2019), 535-554. (2019) Zbl1442.20040MR4041359DOI10.26493/1855-3974.1884.5cb
  16. Weiss, B., 10.1090/trans2/202/18, Topology, Ergodic Theory, Real Algebraic Geometry: Rokhlin's Memorial American Mathematical Society Translations: Series 2, 202. American Mathematical Society (2001), 257-262. (2001) Zbl0982.22004MR1819193DOI10.1090/trans2/202/18
  17. Ziman, M., Extensions of Latin subsquares and local embeddability of groups and group algebras, Quasigroups Relat. Syst. 11 (2004), 115-125. (2004) Zbl1060.20057MR2064165

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.