Sofic groups are not locally embeddable into finite Moufang loops
Heghine Ghumashyan; Jaroslav Guričan
Mathematica Bohemica (2022)
- Volume: 147, Issue: 1, page 11-18
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topGhumashyan, Heghine, and Guričan, Jaroslav. "Sofic groups are not locally embeddable into finite Moufang loops." Mathematica Bohemica 147.1 (2022): 11-18. <http://eudml.org/doc/298258>.
@article{Ghumashyan2022,
abstract = {We shall show that there exist sofic groups which are not locally embeddable into finite Moufang loops. These groups serve as counterexamples to a problem and two conjectures formulated in the paper by M. Vodička, P. Zlatoš (2019).},
author = {Ghumashyan, Heghine, Guričan, Jaroslav},
journal = {Mathematica Bohemica},
keywords = {group; diassociative IP loop; Moufang loop; finite embeddability property; local embeddability},
language = {eng},
number = {1},
pages = {11-18},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sofic groups are not locally embeddable into finite Moufang loops},
url = {http://eudml.org/doc/298258},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Ghumashyan, Heghine
AU - Guričan, Jaroslav
TI - Sofic groups are not locally embeddable into finite Moufang loops
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 1
SP - 11
EP - 18
AB - We shall show that there exist sofic groups which are not locally embeddable into finite Moufang loops. These groups serve as counterexamples to a problem and two conjectures formulated in the paper by M. Vodička, P. Zlatoš (2019).
LA - eng
KW - group; diassociative IP loop; Moufang loop; finite embeddability property; local embeddability
UR - http://eudml.org/doc/298258
ER -
References
top- Baumslag, G., Solitar, D., 10.1090/S0002-9904-1962-10745-9, Bull. Am. Math. Soc. 68 (1962), 199-201. (1962) Zbl0108.02702MR0142635DOI10.1090/S0002-9904-1962-10745-9
- Ceccherini-Silberstein, T., Coornaert, M., 10.1007/978-3-642-14034-1, Springer Monographs in Mathematics. Springer, Berlin (2010). (2010) Zbl1218.37004MR2683112DOI10.1007/978-3-642-14034-1
- Collins, B., Dykema, K. J., Free products of sofic groups with amalgamation over monotileably amenable groups, Münster J. Math. 4 (2011), 101-118. (2011) Zbl1242.43003MR2869256
- Drápal, A., 10.1090/S0002-9939-2010-10501-4, Proc. Am. Math. Soc. 139 (2011), 93-98. (2011) Zbl1215.20059MR2729073DOI10.1090/S0002-9939-2010-10501-4
- Glebsky, L. Y., Gordon, Y. I., 10.1007/s10958-007-0446-1, J. Math. Sci. 140 (2007), 369-375. (2007) Zbl1159.43300MR2183215DOI10.1007/s10958-007-0446-1
- Henkin, L., 10.2307/2268482, J. Symb. Log. 21 (1956), 28-32. (1956) Zbl0071.00701MR0075895DOI10.2307/2268482
- Higman, G., Neumann, B. H., Neumann, H., 10.1112/jlms/s1-24.4.247, J. Lond. Math. Soc. 24 (1949), 247-254. (1949) Zbl0034.30101MR0032641DOI10.1112/jlms/s1-24.4.247
- Lyndon, R. C., Schupp, P. E., 10.1007/978-3-642-61896-3, Classics in Mathematics. Springer, Berlin (2001). (2001) Zbl0997.20037MR1812024DOI10.1007/978-3-642-61896-3
- Magnus, W., Karrass, A., Solitar, D., Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Dover Books on Mathematics. Dover Publications, Mineola (2004). (2004) Zbl1130.20307MR2109550
- Mal'tsev, A. I., On a general method for obtaining local theorems in group theory, Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Fak. 1 (1941), 3-9 Russian. (1941) MR0075939
- Mal'tsev, A. I., 10.1090/trans2/119, Twelve Papers in Algebra American Mathematical Society Translations: Series 2, 119. American Mathematical Society (1983), 67-79. (1983) Zbl0511.20026DOI10.1090/trans2/119
- Meskin, S., 10.2307/1995962, Trans. Am. Math. Soc. 164 (1972), 105-114. (1972) Zbl0245.20028MR285589DOI10.2307/1995962
- Pflugfelder, H. O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics 7. Heldermann Verlag, Berlin (1990). (1990) Zbl0715.20043MR1125767
- Vershik, A. M., Gordon, E. I., Groups that are locally embeddable in the class of finite groups, St. Petersbg. Math. J. 9 (1998), 49-67. (1998) Zbl0898.20016MR1458419
- Vodička, M., Zlatoš, P., 10.26493/1855-3974.1884.5cb, Ars Math. Contemp. 17 (2019), 535-554. (2019) Zbl1442.20040MR4041359DOI10.26493/1855-3974.1884.5cb
- Weiss, B., 10.1090/trans2/202/18, Topology, Ergodic Theory, Real Algebraic Geometry: Rokhlin's Memorial American Mathematical Society Translations: Series 2, 202. American Mathematical Society (2001), 257-262. (2001) Zbl0982.22004MR1819193DOI10.1090/trans2/202/18
- Ziman, M., Extensions of Latin subsquares and local embeddability of groups and group algebras, Quasigroups Relat. Syst. 11 (2004), 115-125. (2004) Zbl1060.20057MR2064165
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.