Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning
Milutin Obradović; Nikola Tuneski; Paweł Zaprawa
Mathematica Bohemica (2022)
- Volume: 147, Issue: 2, page 211-220
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topObradović, Milutin, Tuneski, Nikola, and Zaprawa, Paweł. "Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning." Mathematica Bohemica 147.2 (2022): 211-220. <http://eudml.org/doc/298271>.
@article{Obradović2022,
abstract = {We improve the bounds of the third order Hankel determinant for two classes of univalent functions with bounded turning.},
author = {Obradović, Milutin, Tuneski, Nikola, Zaprawa, Paweł},
journal = {Mathematica Bohemica},
keywords = {analytic function; univalent function; Hankel determinant; upper bound; bounded turning},
language = {eng},
number = {2},
pages = {211-220},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning},
url = {http://eudml.org/doc/298271},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Obradović, Milutin
AU - Tuneski, Nikola
AU - Zaprawa, Paweł
TI - Sharp bounds of the third Hankel determinant for classes of univalent functions with bounded turning
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 2
SP - 211
EP - 220
AB - We improve the bounds of the third order Hankel determinant for two classes of univalent functions with bounded turning.
LA - eng
KW - analytic function; univalent function; Hankel determinant; upper bound; bounded turning
UR - http://eudml.org/doc/298271
ER -
References
top- Ali, R. M., 10.1216/rmjm/1181072410, Rocky Mt. J. Math. 24 (1994), 447-451. (1994) Zbl0816.30010MR1277337DOI10.1216/rmjm/1181072410
- Bansal, D., Maharana, S., Prajapat, J. K., 10.4134/JKMS.2015.52.6.1139, J. Korean Math. Soc. 52 (2015), 1139-1148. (2015) Zbl1328.30005MR3418550DOI10.4134/JKMS.2015.52.6.1139
- Carlson, F., Sur les coefficients d'une fonction bornée dans le cercle unité, Ark. Mat. Astron. Fys. A27 (1940), 8 pages French. (1940) Zbl0023.04905MR0003231
- Dienes, P., The Taylor Series: An Introduction to the Theory of Functions of a Complex Variable, Dover Publications, New York (1957). (1957) Zbl0078.05901MR0089895
- Grenander, U., Szegő, G., Toeplitz Forms and Their Applications, California Monographs in Mathematical Sciences. University of California Press, Berkeley (1958). (1958) Zbl0080.09501MR0094840
- Hayman, W. K., 10.1112/plms/s3-18.1.77, Proc. Lond. Math. Soc., III. Ser. 18 (1968), 77-94. (1968) Zbl0158.32101MR0219715DOI10.1112/plms/s3-18.1.77
- Janteng, A., Halim, S. A., Darus, M., Coefficient inequality for a function whose derivative has a positive real part, JIPAM, J. Inequal. Pure Appl. Math. 7 (2006), Article ID 50, 5 pages. (2006) Zbl1134.30310MR2221331
- Janteng, A., Halim, S. A., Darus, M., Hankel determinant for starlike and convex functions, Int. J. Math. Anal., Ruse 1 (2007), 619-625. (2007) Zbl1137.30308MR2370200
- Khatter, K., Ravichandran, V., Kumar, S. S., 10.1007/s41478-017-0037-6, J. Anal. 28 (2020), 45-56. (2020) Zbl1435.30049MR4077300DOI10.1007/s41478-017-0037-6
- Kowalczyk, B., Lecko, A., Sim, Y. J., 10.1017/S0004972717001125, Bull. Aust. Math. Soc. 97 (2018), 435-445. (2018) Zbl1394.30007MR3802458DOI10.1017/S0004972717001125
- Krzyz, J., A counter example concerning univalent functions, Folia Soc. Sci. Lublin. Mat. Fiz. Chem. 2 (1962), 57-58. (1962)
- Obradović, M., Tuneski, N., Hankel determinant of second order for some classes of analytic functions, Available at https://arxiv.org/abs/1903.08069 (2019), 6 pages. (2019) MR4392540
- Obradović, M., Tuneski, N., New upper bounds of the third Hankel determinant for some classes of univalent functions, Available at https://arxiv.org/abs/1911.10770 (2020), 10 pages. (2020) MR4198419
- Thomas, D. K., Tuneski, N., Vasudevarao, A., 10.1515/9783110560961, De Gruyter Studies in Mathematics 69. De Gruyter, Berlin (2018). (2018) Zbl1397.30002MR3791816DOI10.1515/9783110560961
- Krishna, D. Vamshee, Venkateswarlu, B., RamReddy, T., 10.1016/j.jnnms.2015.03.001, J. Niger. Math. Soc. 34 (2015), 121-127. (2015) Zbl1353.30013MR3512016DOI10.1016/j.jnnms.2015.03.001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.