Sidon basis in polynomial rings over finite fields
Wentang Kuo; Shuntaro Yamagishi
Czechoslovak Mathematical Journal (2021)
- Volume: 71, Issue: 2, page 555-562
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKuo, Wentang, and Yamagishi, Shuntaro. "Sidon basis in polynomial rings over finite fields." Czechoslovak Mathematical Journal 71.2 (2021): 555-562. <http://eudml.org/doc/298273>.
@article{Kuo2021,
abstract = {Let $\mathbb \{F\}_q[t]$ denote the polynomial ring over $\mathbb \{F\}_q$, the finite field of $q$ elements. Suppose the characteristic of $\mathbb \{F\}_q$ is not $2$ or $3$. We prove that there exist infinitely many $N \in \mathbb \{N\}$ such that the set $\lbrace f \in \mathbb \{F\}_q[t] \colon \deg f < N \rbrace $ contains a Sidon set which is an additive basis of order $3$.},
author = {Kuo, Wentang, Yamagishi, Shuntaro},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sidon set; additive basis; polynomial rings over finite fields},
language = {eng},
number = {2},
pages = {555-562},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sidon basis in polynomial rings over finite fields},
url = {http://eudml.org/doc/298273},
volume = {71},
year = {2021},
}
TY - JOUR
AU - Kuo, Wentang
AU - Yamagishi, Shuntaro
TI - Sidon basis in polynomial rings over finite fields
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 555
EP - 562
AB - Let $\mathbb {F}_q[t]$ denote the polynomial ring over $\mathbb {F}_q$, the finite field of $q$ elements. Suppose the characteristic of $\mathbb {F}_q$ is not $2$ or $3$. We prove that there exist infinitely many $N \in \mathbb {N}$ such that the set $\lbrace f \in \mathbb {F}_q[t] \colon \deg f < N \rbrace $ contains a Sidon set which is an additive basis of order $3$.
LA - eng
KW - Sidon set; additive basis; polynomial rings over finite fields
UR - http://eudml.org/doc/298273
ER -
References
top- Cilleruelo, J., 10.1007/s00493-012-2819-4, Combinatorica 32 (2012), 497-511. (2012) Zbl1291.11025MR3004806DOI10.1007/s00493-012-2819-4
- Cilleruelo, J., 10.1112/plms/pdv050, Proc. Lond. Math. Soc. (3) 111 (2015), 1206-1230. (2015) Zbl1390.11026MR3477233DOI10.1112/plms/pdv050
- Deshouillers, J.-M., Plagne, A., 10.1007/s10474-008-8097-3, Acta Math. Hung. 123 (2009), 233-238. (2009) Zbl1200.11008MR2500912DOI10.1007/s10474-008-8097-3
- Erdős, P., Sárközy, A., Sós, V. T., 10.1016/0012-365X(94)00108-U, Discrete Math. 136 (1994), 75-99. (1994) Zbl0818.11009MR1313282DOI10.1016/0012-365X(94)00108-U
- Erdős, P., Sárközy, A., Sós, V. T., 10.1006/jnth.1994.1040, J. Number Theory 47 (1994), 329-347. (1994) Zbl0811.11014MR1278402DOI10.1006/jnth.1994.1040
- Erdős, P., Turán, P., 10.1112/jlms/s1-16.4.212, J. Lond. Math. Soc. 16 (1941), 212-215. (1941) Zbl0061.07301MR0006197DOI10.1112/jlms/s1-16.4.212
- Kiss, S. Z., 10.1007/s10474-010-9155-1, Acta Math. Hung. 128 (2010), 46-58. (2010) Zbl1218.11012MR2665798DOI10.1007/s10474-010-9155-1
- Kiss, S. Z., Rozgonyi, E., Sándor, C., 10.7169/facm/2014.51.2.10, Funct. Approximatio, Comment. Math. 51 (2014), 393-413. (2014) Zbl1353.11016MR3282635DOI10.7169/facm/2014.51.2.10
- Konyagin, S. V., Lev, V. F., 10.1007/978-0-387-68361-4_14, Additive Number Theory Springer, New York (2010), 195-202. (2010) Zbl1271.11011MR2744757DOI10.1007/978-0-387-68361-4_14
- Lang, S., Weil, A., 10.2307/2372655, Am. J. Math. 76 (1954), 819-827. (1954) Zbl0058.27202MR0065218DOI10.2307/2372655
- O'Bryant, K., A complete annotated bibliography of work related to Sidon sequences, Electron. J. Comb. DS11 (2004), 39 pages. (2004) Zbl1142.11312
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.