Sidon basis in polynomial rings over finite fields

Wentang Kuo; Shuntaro Yamagishi

Czechoslovak Mathematical Journal (2021)

  • Volume: 71, Issue: 2, page 555-562
  • ISSN: 0011-4642

Abstract

top
Let 𝔽 q [ t ] denote the polynomial ring over 𝔽 q , the finite field of q elements. Suppose the characteristic of 𝔽 q is not 2 or 3 . We prove that there exist infinitely many N such that the set { f 𝔽 q [ t ] : deg f < N } contains a Sidon set which is an additive basis of order 3 .

How to cite

top

Kuo, Wentang, and Yamagishi, Shuntaro. "Sidon basis in polynomial rings over finite fields." Czechoslovak Mathematical Journal 71.2 (2021): 555-562. <http://eudml.org/doc/298273>.

@article{Kuo2021,
abstract = {Let $\mathbb \{F\}_q[t]$ denote the polynomial ring over $\mathbb \{F\}_q$, the finite field of $q$ elements. Suppose the characteristic of $\mathbb \{F\}_q$ is not $2$ or $3$. We prove that there exist infinitely many $N \in \mathbb \{N\}$ such that the set $\lbrace f \in \mathbb \{F\}_q[t] \colon \deg f < N \rbrace $ contains a Sidon set which is an additive basis of order $3$.},
author = {Kuo, Wentang, Yamagishi, Shuntaro},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sidon set; additive basis; polynomial rings over finite fields},
language = {eng},
number = {2},
pages = {555-562},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sidon basis in polynomial rings over finite fields},
url = {http://eudml.org/doc/298273},
volume = {71},
year = {2021},
}

TY - JOUR
AU - Kuo, Wentang
AU - Yamagishi, Shuntaro
TI - Sidon basis in polynomial rings over finite fields
JO - Czechoslovak Mathematical Journal
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 71
IS - 2
SP - 555
EP - 562
AB - Let $\mathbb {F}_q[t]$ denote the polynomial ring over $\mathbb {F}_q$, the finite field of $q$ elements. Suppose the characteristic of $\mathbb {F}_q$ is not $2$ or $3$. We prove that there exist infinitely many $N \in \mathbb {N}$ such that the set $\lbrace f \in \mathbb {F}_q[t] \colon \deg f < N \rbrace $ contains a Sidon set which is an additive basis of order $3$.
LA - eng
KW - Sidon set; additive basis; polynomial rings over finite fields
UR - http://eudml.org/doc/298273
ER -

References

top
  1. Cilleruelo, J., 10.1007/s00493-012-2819-4, Combinatorica 32 (2012), 497-511. (2012) Zbl1291.11025MR3004806DOI10.1007/s00493-012-2819-4
  2. Cilleruelo, J., 10.1112/plms/pdv050, Proc. Lond. Math. Soc. (3) 111 (2015), 1206-1230. (2015) Zbl1390.11026MR3477233DOI10.1112/plms/pdv050
  3. Deshouillers, J.-M., Plagne, A., 10.1007/s10474-008-8097-3, Acta Math. Hung. 123 (2009), 233-238. (2009) Zbl1200.11008MR2500912DOI10.1007/s10474-008-8097-3
  4. Erdős, P., Sárközy, A., Sós, V. T., 10.1016/0012-365X(94)00108-U, Discrete Math. 136 (1994), 75-99. (1994) Zbl0818.11009MR1313282DOI10.1016/0012-365X(94)00108-U
  5. Erdős, P., Sárközy, A., Sós, V. T., 10.1006/jnth.1994.1040, J. Number Theory 47 (1994), 329-347. (1994) Zbl0811.11014MR1278402DOI10.1006/jnth.1994.1040
  6. Erdős, P., Turán, P., 10.1112/jlms/s1-16.4.212, J. Lond. Math. Soc. 16 (1941), 212-215. (1941) Zbl0061.07301MR0006197DOI10.1112/jlms/s1-16.4.212
  7. Kiss, S. Z., 10.1007/s10474-010-9155-1, Acta Math. Hung. 128 (2010), 46-58. (2010) Zbl1218.11012MR2665798DOI10.1007/s10474-010-9155-1
  8. Kiss, S. Z., Rozgonyi, E., Sándor, C., 10.7169/facm/2014.51.2.10, Funct. Approximatio, Comment. Math. 51 (2014), 393-413. (2014) Zbl1353.11016MR3282635DOI10.7169/facm/2014.51.2.10
  9. Konyagin, S. V., Lev, V. F., 10.1007/978-0-387-68361-4_14, Additive Number Theory Springer, New York (2010), 195-202. (2010) Zbl1271.11011MR2744757DOI10.1007/978-0-387-68361-4_14
  10. Lang, S., Weil, A., 10.2307/2372655, Am. J. Math. 76 (1954), 819-827. (1954) Zbl0058.27202MR0065218DOI10.2307/2372655
  11. O'Bryant, K., A complete annotated bibliography of work related to Sidon sequences, Electron. J. Comb. DS11 (2004), 39 pages. (2004) Zbl1142.11312

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.