A smoothing Levenberg-Marquardt method for the complementarity problem over symmetric cone

Xiangjing Liu; Sanyang Liu

Applications of Mathematics (2022)

  • Volume: 67, Issue: 1, page 49-64
  • ISSN: 0862-7940

Abstract

top
In this paper, we propose a smoothing Levenberg-Marquardt method for the symmetric cone complementarity problem. Based on a smoothing function, we turn this problem into a system of nonlinear equations and then solve the equations by the method proposed. Under the condition of Lipschitz continuity of the Jacobian matrix and local error bound, the new method is proved to be globally convergent and locally superlinearly/quadratically convergent. Numerical experiments are also employed to show that the method is stable and efficient.

How to cite

top

Liu, Xiangjing, and Liu, Sanyang. "A smoothing Levenberg-Marquardt method for the complementarity problem over symmetric cone." Applications of Mathematics 67.1 (2022): 49-64. <http://eudml.org/doc/298276>.

@article{Liu2022,
abstract = {In this paper, we propose a smoothing Levenberg-Marquardt method for the symmetric cone complementarity problem. Based on a smoothing function, we turn this problem into a system of nonlinear equations and then solve the equations by the method proposed. Under the condition of Lipschitz continuity of the Jacobian matrix and local error bound, the new method is proved to be globally convergent and locally superlinearly/quadratically convergent. Numerical experiments are also employed to show that the method is stable and efficient.},
author = {Liu, Xiangjing, Liu, Sanyang},
journal = {Applications of Mathematics},
keywords = {complementarity problem; symmetric cone; Levenberg-Marquardt method; Euclidean Jordan algebra; local error bound},
language = {eng},
number = {1},
pages = {49-64},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A smoothing Levenberg-Marquardt method for the complementarity problem over symmetric cone},
url = {http://eudml.org/doc/298276},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Liu, Xiangjing
AU - Liu, Sanyang
TI - A smoothing Levenberg-Marquardt method for the complementarity problem over symmetric cone
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 1
SP - 49
EP - 64
AB - In this paper, we propose a smoothing Levenberg-Marquardt method for the symmetric cone complementarity problem. Based on a smoothing function, we turn this problem into a system of nonlinear equations and then solve the equations by the method proposed. Under the condition of Lipschitz continuity of the Jacobian matrix and local error bound, the new method is proved to be globally convergent and locally superlinearly/quadratically convergent. Numerical experiments are also employed to show that the method is stable and efficient.
LA - eng
KW - complementarity problem; symmetric cone; Levenberg-Marquardt method; Euclidean Jordan algebra; local error bound
UR - http://eudml.org/doc/298276
ER -

References

top
  1. Alizadeh, F., Goldfarb, D., 10.1007/s10107-002-0339-5, Math. Program. 95 (2003), 3-51. (2003) Zbl1153.90522MR1971381DOI10.1007/s10107-002-0339-5
  2. Amini, K., Rostami, F., 10.1016/j.cam.2015.04.040, J. Comput. Appl. Math. 288 (2015), 341-350. (2015) Zbl1320.65074MR3349627DOI10.1016/j.cam.2015.04.040
  3. Chen, X., Qi, H., Tseng, P., 10.1137/S1052623400380584, SIAM J. Optim. 13 (2003), 960-985. (2003) Zbl1076.90042MR2005912DOI10.1137/S1052623400380584
  4. Chen, J.-S., Tseng, P., 10.1007/s10107-005-0617-0, Math. Program. 104 (2005), 293-327. (2005) Zbl1093.90063MR2179239DOI10.1007/s10107-005-0617-0
  5. Dan, H., Yamashita, N., Fukushima, M., 10.1080/1055678021000049345, Optim. Methods Softw. 17 (2002), 605-626. (2002) Zbl1030.65049MR1938337DOI10.1080/1055678021000049345
  6. Facchinei, F., Kanzow, C., 10.1007/BF02614395, Math. Program. 76 (1997), 493-512. (1997) Zbl0871.90096MR1433968DOI10.1007/BF02614395
  7. Faraut, J., Korányi, A., Analysis on Symmetric Cones, Oxford Mathematical Monographs. Oxford University Press, Oxford (1994). (1994) Zbl0841.43002MR1446489
  8. Fukushima, M., Luo, Z.-Q., Tseng, P., 10.1137/S1052623400380365, SIAM J. Optim. 12 (2002), 436-460. (2002) Zbl0995.90094MR1885570DOI10.1137/S1052623400380365
  9. Goldfarb, D., Yin, W., 10.1137/040608982, SIAM J. Sci. Comput. 27 (2005), 622-645. (2005) Zbl1094.68108MR2202237DOI10.1137/040608982
  10. Harker, P. T., Pang, J.-S., 10.1007/BF01582255, Math. Program., Ser. B 48 (1990), 161-220. (1990) Zbl0734.90098MR1073707DOI10.1007/BF01582255
  11. Hayashi, S., Yamashita, N., Fukushima, M., Robust Nash equilibria and second-order cone complementarity problems, J. Nonlinear Convex Anal. 6 (2005), 283-296. (2005) Zbl1137.91310MR2159841
  12. Kanno, Y., Martins, J. A. C., Costa, A. Pinto Da, 10.1002/nme.1493, Int. J. Numer. Methods Eng. 65 (2006), 62-83. (2006) Zbl1106.74044MR2185946DOI10.1002/nme.1493
  13. Kheirfam, B., Mahdavi-Amiri, N., 10.1007/s11590-013-0618-5, Optim. Lett. 8 (2014), 1017-1029. (2014) Zbl1320.90092MR3170583DOI10.1007/s11590-013-0618-5
  14. Lu, N., Huang, Z.-H., 10.1007/s10957-013-0436-z, J. Optim. Theory Appl. 161 (2014), 446-464. (2014) Zbl1291.90261MR3193800DOI10.1007/s10957-013-0436-z
  15. Shahraki, M. Sayadi, Mansouri, H., Zangiabadi, M., Mahdavi-Amiri, N., 10.1007/s11075-017-0387-9, Numer. Algorithms 78 (2018), 535-552. (2018) Zbl1395.90240MR3803358DOI10.1007/s11075-017-0387-9
  16. Sun, D., Sun, J., 10.1287/moor.1070.0300, Math. Oper. Res. 33 (2008), 421-445. (2008) Zbl1218.90197MR2416001DOI10.1287/moor.1070.0300
  17. Wang, G. Q., Bai, Y. Q., 10.1007/s10957-011-9938-8, J. Optim. Theory Appl. 152 (2012), 739-772. (2012) Zbl1251.90392MR2886370DOI10.1007/s10957-011-9938-8
  18. Yamashita, N., Fukushima, M., 10.1007/978-3-7091-6217-0_18, Topics in Numerical Analysis Computing Supplementa 15. Springer, Wien (2001), 239-249. (2001) Zbl1001.65047MR1874516DOI10.1007/978-3-7091-6217-0_18
  19. Zhang, J.-L., Zhang, X., 10.1016/j.amc.2005.11.036, Appl. Math. Comput. 178 (2006), 212-228. (2006) Zbl1104.65061MR2248482DOI10.1016/j.amc.2005.11.036
  20. Zhang, J., Zhang, K., 10.1080/10556788.2010.534164, Optim. Methods Softw. 27 (2012), 445-459. (2012) Zbl1243.49036MR2916855DOI10.1080/10556788.2010.534164
  21. Zhang, L., 10.1016/j.amc.2007.05.052, Appl. Math. Comput. 196 (2008), 86-93. (2008) Zbl1144.90495MR2382592DOI10.1016/j.amc.2007.05.052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.