Ramification in quartic cyclic number fields K generated by x 4 + p x 2 + p

Julio Pérez-Hernández; Mario Pineda-Ruelas

Mathematica Bohemica (2021)

  • Volume: 146, Issue: 4, page 471-481
  • ISSN: 0862-7959

Abstract

top
If K is the splitting field of the polynomial f ( x ) = x 4 + p x 2 + p and p is a rational prime of the form 4 + n 2 , we give appropriate generators of K to obtain the explicit factorization of the ideal q 𝒪 K , where q is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.

How to cite

top

Pérez-Hernández, Julio, and Pineda-Ruelas, Mario. "Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$." Mathematica Bohemica 146.4 (2021): 471-481. <http://eudml.org/doc/298278>.

@article{Pérez2021,
abstract = {If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q\{\mathcal \{O\}\}_\{K\}$, where $q$ is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.},
author = {Pérez-Hernández, Julio, Pineda-Ruelas, Mario},
journal = {Mathematica Bohemica},
keywords = {ramification; cyclic quartic field; discriminant; index},
language = {eng},
number = {4},
pages = {471-481},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$},
url = {http://eudml.org/doc/298278},
volume = {146},
year = {2021},
}

TY - JOUR
AU - Pérez-Hernández, Julio
AU - Pineda-Ruelas, Mario
TI - Ramification in quartic cyclic number fields $K$ generated by $x^4+px^2+p$
JO - Mathematica Bohemica
PY - 2021
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 146
IS - 4
SP - 471
EP - 481
AB - If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q{\mathcal {O}}_{K}$, where $q$ is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.
LA - eng
KW - ramification; cyclic quartic field; discriminant; index
UR - http://eudml.org/doc/298278
ER -

References

top
  1. Alaca, Ş., Spearman, B. K., Williams, K. S., The factorization of 2 in cubic fields with index 2, Far East J. Math. Sci. (FJMS) 14 (2004), 273-282. (2004) Zbl1080.11079MR2108046
  2. Alaca, Ş., Williams, K. S., 10.1017/cbo9780511791260, Cambridge University Press, Cambridge (2004). (2004) Zbl1035.11001MR2031707DOI10.1017/cbo9780511791260
  3. Cohen, H., 10.1007/978-3-662-02945-9, Graduate Texts in Mathematics 138. Springer, Berlin (1993). (1993) Zbl0786.11071MR1228206DOI10.1007/978-3-662-02945-9
  4. Conrad, K., Factoring after Dedekind, Available at https://kconrad.math.uconn.edu/blurbs/gradnumthy/dedekindf.pdf 7 pages. 
  5. Driver, E., Leonard, P. A., Williams, K. S., 10.2307/30037628, Am. Math. Mon. 112 (2005), 876-890. (2005) Zbl1211.11037MR2186831DOI10.2307/30037628
  6. Engstrom, H. T., 10.1090/S0002-9947-1930-1501535-0, Trans. Am. Math. Soc. 32 (1930), 223-237 9999JFM99999 56.0885.04. (1930) MR1501535DOI10.1090/S0002-9947-1930-1501535-0
  7. Guàrdia, J., Montes, J., Nart, E., 10.5802/jtnb.782, J. Théor. Nombres Bordx. 23 (2011), 667-696. (2011) Zbl1266.11131MR2861080DOI10.5802/jtnb.782
  8. Guàrdia, J., Montes, J., Nart, E., 10.1090/S0002-9947-2011-05442-5, Trans. Am. Math. Soc. 364 (2012), 361-416. (2012) Zbl1252.11091MR2833586DOI10.1090/S0002-9947-2011-05442-5
  9. Hardy, K., Hudson, R. H., Richman, D., Williams, K. S., Holtz, N. M., Calculation of the Class Numbers of Imaginary Cyclic Quartic Fields, Carleton-Ottawa Mathematical Lecture Note Series 7. Carleton University, Ottawa (1986). (1986) Zbl0615.12009
  10. Hudson, R. H., Williams, K. S., 10.1216/rmjm/1181073167, Rocky Mt. J. Math. 20 (1990), 145-150. (1990) Zbl0707.11078MR1057983DOI10.1216/rmjm/1181073167
  11. Kappe, L.-C., Warren, B., 10.2307/2323198, Am. Math. Mon. 96 (1989), 133-137. (1989) Zbl0702.11075MR0992075DOI10.2307/2323198
  12. Llorente, P., Nart, E., 10.1090/S0002-9939-1983-0687621-6, Proc. Am. Math. Soc. 87 (1983), 579-585. (1983) Zbl0514.12003MR0687621DOI10.1090/S0002-9939-1983-0687621-6
  13. Montes, J., Polígonos de Newton de orden superior y aplicaciones aritméticas: Dissertation Ph.D, Universitat de Barcelona, Barcelona (1999), Spanish. (1999) 
  14. Spearman, B. K., Williams, K. S., 10.1007/s00605-002-0547-3, Monatsh. Math. 140 (2003), 19-70. (2003) Zbl1049.11111MR2007140DOI10.1007/s00605-002-0547-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.