Isolated subgroups of finite abelian groups
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 2, page 615-620
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTărnăuceanu, Marius. "Isolated subgroups of finite abelian groups." Czechoslovak Mathematical Journal 72.2 (2022): 615-620. <http://eudml.org/doc/298297>.
@article{Tărnăuceanu2022,
abstract = {We say that a subgroup $H$ is isolated in a group $G$ if for every $x\in G$ we have either $x\in H$ or $\langle x\rangle \cap H=1$. We describe the set of isolated subgroups of a finite abelian group. The technique used is based on an interesting connection between isolated subgroups and the function sum of element orders of a finite group.},
author = {Tărnăuceanu, Marius},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite abelian group; isolated subgroup; sum of element orders},
language = {eng},
number = {2},
pages = {615-620},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Isolated subgroups of finite abelian groups},
url = {http://eudml.org/doc/298297},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Tărnăuceanu, Marius
TI - Isolated subgroups of finite abelian groups
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 615
EP - 620
AB - We say that a subgroup $H$ is isolated in a group $G$ if for every $x\in G$ we have either $x\in H$ or $\langle x\rangle \cap H=1$. We describe the set of isolated subgroups of a finite abelian group. The technique used is based on an interesting connection between isolated subgroups and the function sum of element orders of a finite group.
LA - eng
KW - finite abelian group; isolated subgroup; sum of element orders
UR - http://eudml.org/doc/298297
ER -
References
top- Amiri, H., Amiri, S. M. Jafarian, Isaacs, I. M., 10.1080/00927870802502530, Commun. Algebra 37 (2009), 2978-2980. (2009) Zbl1183.20022MR2554185DOI10.1080/00927870802502530
- Busarkin, V. M., The structure of isolated subgroups in finite groups, Algebra Logika 4 (1965), 33-50 Russian. (1965) Zbl0145.02904MR0179249
- Busarkin, V. M., 10.1007/BF02199089, Sib. Math. J. 9 (1968), 560-563. (1968) Zbl0192.35301MR0237628DOI10.1007/BF02199089
- Isaacs, I. M., 10.1090/gsm/092, Graduate Studies in Mathematics 92. American Mathematical Society, Providence (2008). (2008) Zbl1169.20001MR2426855DOI10.1090/gsm/092
- Isolated subgroup, Encyclopedia of Mathematics. Available at https://encyclopediaofmath.org/wiki/Isolated subgroup.
- Janko, Z., 10.1016/j.jalgebra.2016.06.032, J. Algebra 465 (2016), 41-61. (2016) Zbl1354.20012MR3537814DOI10.1016/j.jalgebra.2016.06.032
- Kurosh, A. G., The Theory of Groups. Volume I, II, Chelsea Publishing, New York (1960). (1960) Zbl0064.25104MR0109842
- Suzuki, M., Group Theory. I, Grundlehren der Mathematischen Wissenschaften 247. Springer, Berlin (1982). (1982) Zbl0472.20001MR0648772
- Tărnăuceanu, M., 10.1515/ms-2021-0008, Math. Slovaca 71 (2021), 627-630. (2021) Zbl07438366MR4272885DOI10.1515/ms-2021-0008
- Tărnăuceanu, M., Fodor, D. G., 10.2478/aicu-2013-0013, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 60 (2014), 1-7. (2014) Zbl1299.20059MR3252452DOI10.2478/aicu-2013-0013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.