Degree sums of adjacent vertices for traceability of claw-free graphs
Tao Tian; Liming Xiong; Zhi-Hong Chen; Shipeng Wang
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 2, page 313-330
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTian, Tao, et al. "Degree sums of adjacent vertices for traceability of claw-free graphs." Czechoslovak Mathematical Journal 72.2 (2022): 313-330. <http://eudml.org/doc/298307>.
@article{Tian2022,
abstract = {The line graph of a graph $G$, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in $G$ have a vertex in common. For a graph $H$, define $\bar\{\sigma \}_2 (H) = \min \lbrace d(u) + d(v) \colon uv \in E(H)\rbrace $. Let $H$ be a 2-connected claw-free simple graph of order $n$ with $\delta (H)\ge 3$. We show that, if $\bar\{\sigma \}_2 (H) \ge \frac\{1\}\{7\} (2n -5)$ and $n$ is sufficiently large, then either $H$ is traceable or the Ryjáček’s closure $\{\rm cl\}(H)=L(G)$, where $G$ is an essentially $2$-edge-connected triangle-free graph that can be contracted to one of the two graphs of order 10 which have no spanning trail. Furthermore, if $\bar\{\sigma \}_2 (H) > \frac\{1\}\{3\} (n-6)$ and $n$ is sufficiently large, then $H$ is traceable. The bound $\frac\{1\}\{3\} (n-6)$ is sharp. As a byproduct, we prove that there are exactly eight graphs in the family $\{\mathcal \{G\}\}$ of 2-edge-connected simple graphs of order at most 11 that have no spanning trail, an improvement of the result in Z. Niu et al. (2012).},
author = {Tian, Tao, Xiong, Liming, Chen, Zhi-Hong, Wang, Shipeng},
journal = {Czechoslovak Mathematical Journal},
keywords = {traceable graph; line graph; spanning trail; closure},
language = {eng},
number = {2},
pages = {313-330},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Degree sums of adjacent vertices for traceability of claw-free graphs},
url = {http://eudml.org/doc/298307},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Tian, Tao
AU - Xiong, Liming
AU - Chen, Zhi-Hong
AU - Wang, Shipeng
TI - Degree sums of adjacent vertices for traceability of claw-free graphs
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 313
EP - 330
AB - The line graph of a graph $G$, denoted by $L(G)$, has $E(G)$ as its vertex set, where two vertices in $L(G)$ are adjacent if and only if the corresponding edges in $G$ have a vertex in common. For a graph $H$, define $\bar{\sigma }_2 (H) = \min \lbrace d(u) + d(v) \colon uv \in E(H)\rbrace $. Let $H$ be a 2-connected claw-free simple graph of order $n$ with $\delta (H)\ge 3$. We show that, if $\bar{\sigma }_2 (H) \ge \frac{1}{7} (2n -5)$ and $n$ is sufficiently large, then either $H$ is traceable or the Ryjáček’s closure ${\rm cl}(H)=L(G)$, where $G$ is an essentially $2$-edge-connected triangle-free graph that can be contracted to one of the two graphs of order 10 which have no spanning trail. Furthermore, if $\bar{\sigma }_2 (H) > \frac{1}{3} (n-6)$ and $n$ is sufficiently large, then $H$ is traceable. The bound $\frac{1}{3} (n-6)$ is sharp. As a byproduct, we prove that there are exactly eight graphs in the family ${\mathcal {G}}$ of 2-edge-connected simple graphs of order at most 11 that have no spanning trail, an improvement of the result in Z. Niu et al. (2012).
LA - eng
KW - traceable graph; line graph; spanning trail; closure
UR - http://eudml.org/doc/298307
ER -
References
top- Bondy, J. A., Murty, U. S. R., 10.1007/978-1-84628-970-5, Graduate Texts in Mathematics 244. Springer, New York (2008). (2008) Zbl1134.05001MR2368647DOI10.1007/978-1-84628-970-5
- Brandt, S., Favaron, O., Ryjáček, Z., 10.1002/(SICI)1097-0118(200005)34:1<30::AID-JGT4>3.0.CO;2-R, J. Graph Theory 34 (2000), 30-41. (2000) Zbl0946.05053MR1753065DOI10.1002/(SICI)1097-0118(200005)34:1<30::AID-JGT4>3.0.CO;2-R
- Brualdi, R. A., Shanny, R. F., 10.1002/jgt.3190050312, J. Graph Theory 5 (1981), 307-314. (1981) Zbl0437.05041MR0625072DOI10.1002/jgt.3190050312
- Catlin, P. A., 10.1002/jgt.3190120105, J. Graph Theory 12 (1988), 29-44. (1988) Zbl0659.05073MR0928734DOI10.1002/jgt.3190120105
- Catlin, P. A., Han, Z.-Y., Lai, H.-J., 10.1016/S0012-365X(95)00149-Q, Discrete Math. 160 (1996), 81-91. (1996) Zbl0859.05060MR1417562DOI10.1016/S0012-365X(95)00149-Q
- Chen, Z.-H., 10.1002/jgt.22120, J. Graph Theory 86 (2017), 193-212. (2017) Zbl1370.05124MR3684782DOI10.1002/jgt.22120
- Dirac, G. A., 10.1112/plms/s3-2.1.69, Proc. Lond. Math. Soc. (3) 2 (1952), 69-81. (1952) Zbl0047.17001MR0047308DOI10.1112/plms/s3-2.1.69
- Faudree, R., Flandrin, E., Ryjáček, Z., 10.1016/S0012-365X(96)00045-3, Discrete Math. 164 (1997), 87-147. (1997) Zbl0879.05043MR1432221DOI10.1016/S0012-365X(96)00045-3
- Gould, R. J., 10.1007/s00373-013-1377-x, Graphs Comb. 30 (2014), 1-46. (2014) Zbl1292.05163MR3143857DOI10.1007/s00373-013-1377-x
- Li, D., Lai, H.-J., Zhan, M., 10.1016/j.dam.2004.04.005, Discrete Appl. Math. 145 (2005), 422-428. (2005) Zbl1057.05053MR2112533DOI10.1016/j.dam.2004.04.005
- Matthews, M. M., Sumner, D. P., 10.1002/jgt.3190090208, J. Graph Theory 9 (1985), 269-277. (1985) Zbl0591.05041MR0797514DOI10.1002/jgt.3190090208
- Niu, Z., Xiong, L., Zhang, S., Smallest 2-edge-connected graphs without a spanning trail, Util. Math. 88 (2012), 381-397. (2012) Zbl1256.05206MR2975848
- Ryjáček, Z., 10.1006/jctb.1996.1732, J. Comb. Theory, Ser. B 70 (1997), 217-224. (1997) Zbl0872.05032MR1459867DOI10.1006/jctb.1996.1732
- Shao, Y., Claw-Free Graphs and Line Graphs: Ph.D Thesis, West Virginia University, Morgantown (2005). (2005) MR2707853
- Singleton, J. E., Maximal Nontraceable Graphs: Ph.D Thesis, University of South Africa, Pretoria (2006). (2006) MR2717408
- Tian, T., Degree Conditions for Hamiltonian Properties of Claw-free Graphs: Ph.D Thesis, University of Twente, Enschede (2018). (2018)
- Tian, T., Broersma, H., Xiong, L., 10.1016/j.disc.2020.111883, Discrete Math. 343 (2020), Article ID 111883, 10 pages. (2020) Zbl1440.05163MR4073374DOI10.1016/j.disc.2020.111883
- Tian, T., Xiong, L., 10.1016/j.amc.2017.10.043, Appl. Math. Comput. 321 (2018), 463-471. (2018) Zbl07070099MR3732390DOI10.1016/j.amc.2017.10.043
- Tian, T., Xiong, L., 10.7151/dmgt.2125, Discuss. Math., Graph Theory 40 (2020), 85-106. (2020) Zbl1439.05131MR4041969DOI10.7151/dmgt.2125
- Veldman, H. J., 10.1016/0012-365X(92)00063-W, Discrete Math. 124 (1994), 229-239. (1994) Zbl0789.05061MR1258856DOI10.1016/0012-365X(92)00063-W
- Wang, S., Xiong, L., 10.37236/8121, Electron. J. Comb. 26 (2019), Article ID P3.56, 19 pages. (2019) Zbl1420.05089MR4017309DOI10.37236/8121
- Xiong, L., Zong, M., 10.1016/j.disc.2008.10.012, Discrete Math. 309 (2009), 3779-3785. (2009) Zbl1218.05085MR2537372DOI10.1016/j.disc.2008.10.012
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.