The potential-Ramsey number of K n and K t - k

Jin-Zhi Du; Jian Hua Yin

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 2, page 513-522
  • ISSN: 0011-4642

Abstract

top
A nonincreasing sequence π = ( d 1 , ... , d n ) of nonnegative integers is a graphic sequence if it is realizable by a simple graph G on n vertices. In this case, G is referred to as a realization of π . Given two graphs G 1 and G 2 , A. Busch et al. (2014) introduced the potential-Ramsey number of G 1 and G 2 , denoted by r pot ( G 1 , G 2 ) , as the smallest nonnegative integer m such that for every m -term graphic sequence π , there is a realization G of π with G 1 G or with G 2 G ¯ , where G ¯ is the complement of G . For t 2 and 0 k t 2 , let K t - k be the graph obtained from K t by deleting k independent edges. We determine r pot ( K n , K t - k ) for t 3 , 1 k t 2 and n 2 k + 2 , which gives the complete solution to a result in J. Z. Du, J. H. Yin (2021).

How to cite

top

Du, Jin-Zhi, and Yin, Jian Hua. "The potential-Ramsey number of $K_n$ and $K_t^{-k}$." Czechoslovak Mathematical Journal 72.2 (2022): 513-522. <http://eudml.org/doc/298308>.

@article{Du2022,
abstract = {A nonincreasing sequence $\pi =(d_1,\ldots ,d_n)$ of nonnegative integers is a graphic sequence if it is realizable by a simple graph $G$ on $n$ vertices. In this case, $G$ is referred to as a realization of $\pi $. Given two graphs $G_1$ and $G_2$, A. Busch et al. (2014) introduced the potential-Ramsey number of $G_1$ and $G_2$, denoted by $r_\{\rm pot\}(G_1,G_2)$, as the smallest nonnegative integer $m$ such that for every $m$-term graphic sequence $\pi $, there is a realization $G$ of $\pi $ with $G_1\subseteq G$ or with $G_2\subseteq \bar\{G\}$, where $\bar\{G\}$ is the complement of $G$. For $t\ge 2$ and $0\le k\le \lfloor \frac\{t\}\{2\}\rfloor $, let $K_t^\{-k\}$ be the graph obtained from $K_t$ by deleting $k$ independent edges. We determine $r_\{\rm pot\}(K_n,K_t^\{-k\})$ for $t\ge 3$, $1\le k\le \lfloor \frac\{t\}\{2\}\rfloor $ and $n\ge \lceil \sqrt\{2k\}\rceil +2$, which gives the complete solution to a result in J. Z. Du, J. H. Yin (2021).},
author = {Du, Jin-Zhi, Yin, Jian Hua},
journal = {Czechoslovak Mathematical Journal},
keywords = {graphic sequence; potentially $H$-graphic sequence; potential-Ramsey number},
language = {eng},
number = {2},
pages = {513-522},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The potential-Ramsey number of $K_n$ and $K_t^\{-k\}$},
url = {http://eudml.org/doc/298308},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Du, Jin-Zhi
AU - Yin, Jian Hua
TI - The potential-Ramsey number of $K_n$ and $K_t^{-k}$
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 513
EP - 522
AB - A nonincreasing sequence $\pi =(d_1,\ldots ,d_n)$ of nonnegative integers is a graphic sequence if it is realizable by a simple graph $G$ on $n$ vertices. In this case, $G$ is referred to as a realization of $\pi $. Given two graphs $G_1$ and $G_2$, A. Busch et al. (2014) introduced the potential-Ramsey number of $G_1$ and $G_2$, denoted by $r_{\rm pot}(G_1,G_2)$, as the smallest nonnegative integer $m$ such that for every $m$-term graphic sequence $\pi $, there is a realization $G$ of $\pi $ with $G_1\subseteq G$ or with $G_2\subseteq \bar{G}$, where $\bar{G}$ is the complement of $G$. For $t\ge 2$ and $0\le k\le \lfloor \frac{t}{2}\rfloor $, let $K_t^{-k}$ be the graph obtained from $K_t$ by deleting $k$ independent edges. We determine $r_{\rm pot}(K_n,K_t^{-k})$ for $t\ge 3$, $1\le k\le \lfloor \frac{t}{2}\rfloor $ and $n\ge \lceil \sqrt{2k}\rceil +2$, which gives the complete solution to a result in J. Z. Du, J. H. Yin (2021).
LA - eng
KW - graphic sequence; potentially $H$-graphic sequence; potential-Ramsey number
UR - http://eudml.org/doc/298308
ER -

References

top
  1. Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, American Elsevier, New York (1976). (1976) Zbl1226.05083MR0411988
  2. Busch, A., Ferrara, M. J., Hartke, S. G., Jacobson, M. S., 10.1007/s00373-013-1307-y, Graphs Comb. 30 (2014), 847-859. (2014) Zbl1298.05078MR3223948DOI10.1007/s00373-013-1307-y
  3. Busch, A., Ferrara, M. J., Hartke, S. G., Jacobson, M. S., Kaul, H., West, D. B., 10.1002/jgt.20598, J. Graph Theory 70 (2012), 29-39. (2012) Zbl1243.05191MR2916065DOI10.1002/jgt.20598
  4. Du, J., Yin, J., 10.2298/FIL1906605D, Filomat 36 (2019), 1605-1617. (2019) MR4034026DOI10.2298/FIL1906605D
  5. Du, J.-Z., Yin, J.-H., 10.1007/s10255-021-0999-7, Acta Math. Appl. Sin., Engl. Ser. 37 (2021), 176-182. (2021) Zbl1464.05043MR4196622DOI10.1007/s10255-021-0999-7
  6. Dvořák, Z., Mohar, B., 10.1007/s00493-013-2649-z, Combinatorica 33 (2013), 513-529. (2013) Zbl1313.05117MR3132924DOI10.1007/s00493-013-2649-z
  7. Erdős, P., Gallai, T., Graphs with prescribed degrees of vertices, Mat. Lapok 11 (1960), 264-274 Hungarian. (1960) Zbl0103.39701MR1964326
  8. Erdős, P., Jacobson, M. S., Lehel, J., Graphs realizing the same degree sequences and their respective clique numbers, Graph Theory, Combinatorics and Applications. Vol. 1 John Wiley & Sons, New York (1991), 439-449. (1991) Zbl0840.05093MR1170797
  9. Ferrara, M. J., Lesaulnier, T. D., Moffatt, C. K., Wenger, P. S., 10.1007/s00493-015-2986-1, Combinatorica 36 (2016), 687-702. (2016) Zbl1399.05038MR3597587DOI10.1007/s00493-015-2986-1
  10. Ferrara, M. J., Schmitt, J., 10.1137/080715275, SIAM J. Discrete Math. 23 (2009), 517-526. (2009) Zbl1215.05036MR2476846DOI10.1137/080715275
  11. Gould, R. J., Jacobson, M. S., Lehel, J., Potentially G -graphical degree sequences, Combinatorics, Graph Theory and Algorithms. Vol. I New Issues Press, Kalamazoo (1999), 451-460. (1999) MR1985076
  12. Hakimi, S. L., 10.1137/0110037, J. Soc. Ind. Appl. Math. 10 (1962), 496-506. (1962) Zbl0109.16501MR0148049DOI10.1137/0110037
  13. Havel, V., 10.21136/CPM.1955.108220, Čas. Pěstován{'ı Mat. 80 (1955), 477-480 Czech. (1955) Zbl0068.37202MR0089165DOI10.21136/CPM.1955.108220
  14. Rao, A. R., The clique number of a graph with a given degree sequence, Proceedings of the Symposium on Graph Theory ISI Lecture Notes 4. Macmillan, New Delhi (1979), 251-267. (1979) Zbl0483.05038MR0553948
  15. Robertson, N., Song, Z.-X., 10.1002/jgt.20447, J. Graph Theory 64 (2010), 175-183. (2010) Zbl1209.05098MR2674490DOI10.1002/jgt.20447
  16. Yin, J., Li, J., 10.1007/s10114-009-7260-2, Acta Math. Sin., Engl. Ser. 25 (2009), 795-802. (2009) Zbl1229.05161MR2505310DOI10.1007/s10114-009-7260-2
  17. Yin, J.-H., Li, J.-S., 10.1016/j.disc.2005.03.028, Discrete Math. 301 (2005), 218-227. (2005) Zbl1119.05025MR2171314DOI10.1016/j.disc.2005.03.028
  18. Yin, J.-H., Meng, L., Yin, M.-X., 10.1007/s10255-016-0622-5, Acta Math. Appl. Sin., Engl. Ser. 32 (2016), 1005-1014. (2016) Zbl1410.05027MR3552867DOI10.1007/s10255-016-0622-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.