The potential-Ramsey number of and
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 2, page 513-522
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDu, Jin-Zhi, and Yin, Jian Hua. "The potential-Ramsey number of $K_n$ and $K_t^{-k}$." Czechoslovak Mathematical Journal 72.2 (2022): 513-522. <http://eudml.org/doc/298308>.
@article{Du2022,
abstract = {A nonincreasing sequence $\pi =(d_1,\ldots ,d_n)$ of nonnegative integers is a graphic sequence if it is realizable by a simple graph $G$ on $n$ vertices. In this case, $G$ is referred to as a realization of $\pi $. Given two graphs $G_1$ and $G_2$, A. Busch et al. (2014) introduced the potential-Ramsey number of $G_1$ and $G_2$, denoted by $r_\{\rm pot\}(G_1,G_2)$, as the smallest nonnegative integer $m$ such that for every $m$-term graphic sequence $\pi $, there is a realization $G$ of $\pi $ with $G_1\subseteq G$ or with $G_2\subseteq \bar\{G\}$, where $\bar\{G\}$ is the complement of $G$. For $t\ge 2$ and $0\le k\le \lfloor \frac\{t\}\{2\}\rfloor $, let $K_t^\{-k\}$ be the graph obtained from $K_t$ by deleting $k$ independent edges. We determine $r_\{\rm pot\}(K_n,K_t^\{-k\})$ for $t\ge 3$, $1\le k\le \lfloor \frac\{t\}\{2\}\rfloor $ and $n\ge \lceil \sqrt\{2k\}\rceil +2$, which gives the complete solution to a result in J. Z. Du, J. H. Yin (2021).},
author = {Du, Jin-Zhi, Yin, Jian Hua},
journal = {Czechoslovak Mathematical Journal},
keywords = {graphic sequence; potentially $H$-graphic sequence; potential-Ramsey number},
language = {eng},
number = {2},
pages = {513-522},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The potential-Ramsey number of $K_n$ and $K_t^\{-k\}$},
url = {http://eudml.org/doc/298308},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Du, Jin-Zhi
AU - Yin, Jian Hua
TI - The potential-Ramsey number of $K_n$ and $K_t^{-k}$
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 513
EP - 522
AB - A nonincreasing sequence $\pi =(d_1,\ldots ,d_n)$ of nonnegative integers is a graphic sequence if it is realizable by a simple graph $G$ on $n$ vertices. In this case, $G$ is referred to as a realization of $\pi $. Given two graphs $G_1$ and $G_2$, A. Busch et al. (2014) introduced the potential-Ramsey number of $G_1$ and $G_2$, denoted by $r_{\rm pot}(G_1,G_2)$, as the smallest nonnegative integer $m$ such that for every $m$-term graphic sequence $\pi $, there is a realization $G$ of $\pi $ with $G_1\subseteq G$ or with $G_2\subseteq \bar{G}$, where $\bar{G}$ is the complement of $G$. For $t\ge 2$ and $0\le k\le \lfloor \frac{t}{2}\rfloor $, let $K_t^{-k}$ be the graph obtained from $K_t$ by deleting $k$ independent edges. We determine $r_{\rm pot}(K_n,K_t^{-k})$ for $t\ge 3$, $1\le k\le \lfloor \frac{t}{2}\rfloor $ and $n\ge \lceil \sqrt{2k}\rceil +2$, which gives the complete solution to a result in J. Z. Du, J. H. Yin (2021).
LA - eng
KW - graphic sequence; potentially $H$-graphic sequence; potential-Ramsey number
UR - http://eudml.org/doc/298308
ER -
References
top- Bondy, J. A., Murty, U. S. R., Graph Theory with Applications, American Elsevier, New York (1976). (1976) Zbl1226.05083MR0411988
- Busch, A., Ferrara, M. J., Hartke, S. G., Jacobson, M. S., 10.1007/s00373-013-1307-y, Graphs Comb. 30 (2014), 847-859. (2014) Zbl1298.05078MR3223948DOI10.1007/s00373-013-1307-y
- Busch, A., Ferrara, M. J., Hartke, S. G., Jacobson, M. S., Kaul, H., West, D. B., 10.1002/jgt.20598, J. Graph Theory 70 (2012), 29-39. (2012) Zbl1243.05191MR2916065DOI10.1002/jgt.20598
- Du, J., Yin, J., 10.2298/FIL1906605D, Filomat 36 (2019), 1605-1617. (2019) MR4034026DOI10.2298/FIL1906605D
- Du, J.-Z., Yin, J.-H., 10.1007/s10255-021-0999-7, Acta Math. Appl. Sin., Engl. Ser. 37 (2021), 176-182. (2021) Zbl1464.05043MR4196622DOI10.1007/s10255-021-0999-7
- Dvořák, Z., Mohar, B., 10.1007/s00493-013-2649-z, Combinatorica 33 (2013), 513-529. (2013) Zbl1313.05117MR3132924DOI10.1007/s00493-013-2649-z
- Erdős, P., Gallai, T., Graphs with prescribed degrees of vertices, Mat. Lapok 11 (1960), 264-274 Hungarian. (1960) Zbl0103.39701MR1964326
- Erdős, P., Jacobson, M. S., Lehel, J., Graphs realizing the same degree sequences and their respective clique numbers, Graph Theory, Combinatorics and Applications. Vol. 1 John Wiley & Sons, New York (1991), 439-449. (1991) Zbl0840.05093MR1170797
- Ferrara, M. J., Lesaulnier, T. D., Moffatt, C. K., Wenger, P. S., 10.1007/s00493-015-2986-1, Combinatorica 36 (2016), 687-702. (2016) Zbl1399.05038MR3597587DOI10.1007/s00493-015-2986-1
- Ferrara, M. J., Schmitt, J., 10.1137/080715275, SIAM J. Discrete Math. 23 (2009), 517-526. (2009) Zbl1215.05036MR2476846DOI10.1137/080715275
- Gould, R. J., Jacobson, M. S., Lehel, J., Potentially -graphical degree sequences, Combinatorics, Graph Theory and Algorithms. Vol. I New Issues Press, Kalamazoo (1999), 451-460. (1999) MR1985076
- Hakimi, S. L., 10.1137/0110037, J. Soc. Ind. Appl. Math. 10 (1962), 496-506. (1962) Zbl0109.16501MR0148049DOI10.1137/0110037
- Havel, V., 10.21136/CPM.1955.108220, Čas. Pěstován{'ı Mat. 80 (1955), 477-480 Czech. (1955) Zbl0068.37202MR0089165DOI10.21136/CPM.1955.108220
- Rao, A. R., The clique number of a graph with a given degree sequence, Proceedings of the Symposium on Graph Theory ISI Lecture Notes 4. Macmillan, New Delhi (1979), 251-267. (1979) Zbl0483.05038MR0553948
- Robertson, N., Song, Z.-X., 10.1002/jgt.20447, J. Graph Theory 64 (2010), 175-183. (2010) Zbl1209.05098MR2674490DOI10.1002/jgt.20447
- Yin, J., Li, J., 10.1007/s10114-009-7260-2, Acta Math. Sin., Engl. Ser. 25 (2009), 795-802. (2009) Zbl1229.05161MR2505310DOI10.1007/s10114-009-7260-2
- Yin, J.-H., Li, J.-S., 10.1016/j.disc.2005.03.028, Discrete Math. 301 (2005), 218-227. (2005) Zbl1119.05025MR2171314DOI10.1016/j.disc.2005.03.028
- Yin, J.-H., Meng, L., Yin, M.-X., 10.1007/s10255-016-0622-5, Acta Math. Appl. Sin., Engl. Ser. 32 (2016), 1005-1014. (2016) Zbl1410.05027MR3552867DOI10.1007/s10255-016-0622-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.