The Massera-Schäffer problem for a first order linear differential equation

Nina A. Chernyavskaya; Leonid A. Shuster

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 2, page 477-511
  • ISSN: 0011-4642

Abstract

top
We consider the Massera-Schäffer problem for the equation - y ' ( x ) + q ( x ) y ( x ) = f ( x ) , x , where f L p loc ( ) , p [ 1 , ) and 0 q L 1 loc ( ) . By a solution of the problem we mean any function y , absolutely continuous and satisfying the above equation almost everywhere in . Let positive and continuous functions μ ( x ) and θ ( x ) for x be given. Let us introduce the spaces L p ( , μ ) = f L p loc ( ) : f L p ( , μ ) p = - | μ ( x ) f ( x ) | p d x < , L p ( , θ ) = f L p loc ( ) : f L p ( , θ ) p = - | θ ( x ) f ( x ) | p d x < . We obtain requirements to the functions μ , θ and q under which (1) for every function f L p ( , θ ) there exists a unique solution y L p ( , μ ) of the above equation; (2) there is an absolute constant c ( p ) ( 0 , ) such that regardless of the choice of a function f L p ( , θ ) the solution of the above equation satisfies the inequality y L p ( , μ ) c ( p ) f L p ( , θ ) .

How to cite

top

Chernyavskaya, Nina A., and Shuster, Leonid A.. "The Massera-Schäffer problem for a first order linear differential equation." Czechoslovak Mathematical Journal 72.2 (2022): 477-511. <http://eudml.org/doc/298310>.

@article{Chernyavskaya2022,
abstract = {We consider the Massera-Schäffer problem for the equation \[ -y^\{\prime \}(x)+q(x)y(x)=f(x),\quad x\in \mathbb \{R\}, \] where $f\in L_p^\{\rm loc\}(\mathbb \{R\}),$$p\in [1,\infty )$ and $0\le q\in L_1^\{\rm loc\}(\mathbb \{R\}).$ By a solution of the problem we mean any function $y,$ absolutely continuous and satisfying the above equation almost everywhere in $\mathbb \{R\}.$ Let positive and continuous functions $\mu (x)$ and $\theta (x)$ for $x\in \mathbb \{R\}$ be given. Let us introduce the spaces \begin\{eqnarray*\} L\_p(\mathbb \{R\},\mu )&=\biggl \lbrace f\in L\_p^\{\rm loc\}(\mathbb \{R\}) \colon \Vert f\Vert \_\{L\_p(\mathbb \{R\},\mu )\}^p=\int \_\{-\infty \}^\infty |\mu (x)f(x)|^p \{\rm d\} x<\infty \biggr \rbrace ,\\ L\_p(\mathbb \{R\},\theta )&=\biggl \lbrace f\in L\_p^\{\rm loc\}(\mathbb \{R\}) \colon \Vert f\Vert \_\{L\_p(\mathbb \{R\},\theta )\}^p=\int \_\{-\infty \}^\infty |\theta (x)f(x)|^p \{\rm d\} x<\infty \biggr \rbrace . \end\{eqnarray*\} We obtain requirements to the functions $\mu $, $\theta $ and $q$ under which (1) for every function $f\in L_p(\mathbb \{R\},\theta )$ there exists a unique solution $y\in L_p(\mathbb \{R\},\mu )$ of the above equation; (2) there is an absolute constant $c(p)\in (0,\infty )$ such that regardless of the choice of a function $f\in L_p(\mathbb \{R\},\theta )$ the solution of the above equation satisfies the inequality \[\Vert y\Vert \_\{L\_p(\mathbb \{R\},\mu )\}\le c(p)\Vert f\Vert \_\{L\_p(\mathbb \{R\},\theta )\}.\]},
author = {Chernyavskaya, Nina A., Shuster, Leonid A.},
journal = {Czechoslovak Mathematical Journal},
keywords = {admissible space; first order linear differential equation},
language = {eng},
number = {2},
pages = {477-511},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Massera-Schäffer problem for a first order linear differential equation},
url = {http://eudml.org/doc/298310},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Chernyavskaya, Nina A.
AU - Shuster, Leonid A.
TI - The Massera-Schäffer problem for a first order linear differential equation
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 477
EP - 511
AB - We consider the Massera-Schäffer problem for the equation \[ -y^{\prime }(x)+q(x)y(x)=f(x),\quad x\in \mathbb {R}, \] where $f\in L_p^{\rm loc}(\mathbb {R}),$$p\in [1,\infty )$ and $0\le q\in L_1^{\rm loc}(\mathbb {R}).$ By a solution of the problem we mean any function $y,$ absolutely continuous and satisfying the above equation almost everywhere in $\mathbb {R}.$ Let positive and continuous functions $\mu (x)$ and $\theta (x)$ for $x\in \mathbb {R}$ be given. Let us introduce the spaces \begin{eqnarray*} L_p(\mathbb {R},\mu )&=\biggl \lbrace f\in L_p^{\rm loc}(\mathbb {R}) \colon \Vert f\Vert _{L_p(\mathbb {R},\mu )}^p=\int _{-\infty }^\infty |\mu (x)f(x)|^p {\rm d} x<\infty \biggr \rbrace ,\\ L_p(\mathbb {R},\theta )&=\biggl \lbrace f\in L_p^{\rm loc}(\mathbb {R}) \colon \Vert f\Vert _{L_p(\mathbb {R},\theta )}^p=\int _{-\infty }^\infty |\theta (x)f(x)|^p {\rm d} x<\infty \biggr \rbrace . \end{eqnarray*} We obtain requirements to the functions $\mu $, $\theta $ and $q$ under which (1) for every function $f\in L_p(\mathbb {R},\theta )$ there exists a unique solution $y\in L_p(\mathbb {R},\mu )$ of the above equation; (2) there is an absolute constant $c(p)\in (0,\infty )$ such that regardless of the choice of a function $f\in L_p(\mathbb {R},\theta )$ the solution of the above equation satisfies the inequality \[\Vert y\Vert _{L_p(\mathbb {R},\mu )}\le c(p)\Vert f\Vert _{L_p(\mathbb {R},\theta )}.\]
LA - eng
KW - admissible space; first order linear differential equation
UR - http://eudml.org/doc/298310
ER -

References

top
  1. Chernyavskaya, N. A., 10.1002/1522-2616(200209)243:1<5::AID-MANA5>3.0.CO;2-B, Math. Nachr. 243 (2002), 5-18. (2002) Zbl1028.34018MR1923831DOI10.1002/1522-2616(200209)243:1<5::AID-MANA5>3.0.CO;2-B
  2. Chernyavskaya, N. A., Shuster, L. A., 10.4171/ZAA/1285, Z. Anal. Anwend. 25 (2006), 205-235. (2006) Zbl1122.34021MR2229446DOI10.4171/ZAA/1285
  3. Chernyavskaya, N. A., Shuster, L. A., 10.3934/cpaa.2018050, Commun. Pure Appl. Anal. 17 (2018), 1023-1052. (2018) Zbl1397.34052MR3809112DOI10.3934/cpaa.2018050
  4. Courant, R., 10.1002/9781118033241, Blackie & Son, Glasgow (1945). (1945) Zbl0018.30001MR1009558DOI10.1002/9781118033241
  5. Kufner, A., Persson, L.-E., 10.1142/5129, World Scientific, Singapore (2003). (2003) Zbl1065.26018MR1982932DOI10.1142/5129
  6. Lukachev, M., Shuster, L., On uniqueness of the solution of a linear differential equation without boundary conditions, Funct. Differ. Equ. 14 (2007), 337-346. (2007) Zbl1148.34303MR2323215
  7. Massera, J. L., Schäffer, J. J., Linear Differential Equations and Function Spaces, Pure and Applied Mathematics 21. Academic Press, New York (1966). (1966) Zbl0243.34107MR0212324
  8. Mynbaev, K. T., Otelbaev, M. O., Weighted Function Spaces and the Spectrum of Differential Operators, Nauka, Moskva (1988), Russian. (1988) Zbl0651.46037MR0950172
  9. Titchmarsh, E. C., The Theory of Functions, Clarendon Press, Oxford (1932). (1932) Zbl0005.21004MR3728294

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.