On the multiplicity of Laplacian eigenvalues for unicyclic graphs

Fei Wen; Qiongxiang Huang

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 2, page 371-390
  • ISSN: 0011-4642

Abstract

top
Let G be a connected graph of order n and U a unicyclic graph with the same order. We firstly give a sharp bound for m G ( μ ) , the multiplicity of a Laplacian eigenvalue μ of G . As a straightforward result, m U ( 1 ) n - 2 . We then provide two graph operations (i.e., grafting and shifting) on graph G for which the value of m G ( 1 ) is nondecreasing. As applications, we get the distribution of m U ( 1 ) for unicyclic graphs on n vertices. Moreover, for the two largest possible values of m U ( 1 ) { n - 5 , n - 3 } , the corresponding graphs U are completely determined.

How to cite

top

Wen, Fei, and Huang, Qiongxiang. "On the multiplicity of Laplacian eigenvalues for unicyclic graphs." Czechoslovak Mathematical Journal 72.2 (2022): 371-390. <http://eudml.org/doc/298311>.

@article{Wen2022,
abstract = {Let $G$ be a connected graph of order $n$ and $U$ a unicyclic graph with the same order. We firstly give a sharp bound for $m_\{G\}(\mu )$, the multiplicity of a Laplacian eigenvalue $\mu $ of $G$. As a straightforward result, $m_\{U\}(1)\le n-2$. We then provide two graph operations (i.e., grafting and shifting) on graph $G$ for which the value of $m_\{G\}(1)$ is nondecreasing. As applications, we get the distribution of $m_\{U\}(1)$ for unicyclic graphs on $n$ vertices. Moreover, for the two largest possible values of $m_\{U\}(1)\in \lbrace n-5,n-3\rbrace $, the corresponding graphs $U$ are completely determined.},
author = {Wen, Fei, Huang, Qiongxiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {unicyclic graph; Laplacian eigenvalue; multiplicity; bound},
language = {eng},
number = {2},
pages = {371-390},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the multiplicity of Laplacian eigenvalues for unicyclic graphs},
url = {http://eudml.org/doc/298311},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Wen, Fei
AU - Huang, Qiongxiang
TI - On the multiplicity of Laplacian eigenvalues for unicyclic graphs
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 371
EP - 390
AB - Let $G$ be a connected graph of order $n$ and $U$ a unicyclic graph with the same order. We firstly give a sharp bound for $m_{G}(\mu )$, the multiplicity of a Laplacian eigenvalue $\mu $ of $G$. As a straightforward result, $m_{U}(1)\le n-2$. We then provide two graph operations (i.e., grafting and shifting) on graph $G$ for which the value of $m_{G}(1)$ is nondecreasing. As applications, we get the distribution of $m_{U}(1)$ for unicyclic graphs on $n$ vertices. Moreover, for the two largest possible values of $m_{U}(1)\in \lbrace n-5,n-3\rbrace $, the corresponding graphs $U$ are completely determined.
LA - eng
KW - unicyclic graph; Laplacian eigenvalue; multiplicity; bound
UR - http://eudml.org/doc/298311
ER -

References

top
  1. Akbari, S., Kiani, D., Mirzakhah, M., 10.1016/j.laa.2013.11.022, Linear Algebra Appl. 445 (2014), 18-28. (2014) Zbl1292.05164MR3151261DOI10.1016/j.laa.2013.11.022
  2. Akbari, S., Dam, E. R. van, Fakharan, M. H., 10.1016/j.laa.2019.10.011, Linear Algebra Appl. 586 (2020), 262-273. (2020) Zbl1429.05118MR4027756DOI10.1016/j.laa.2019.10.011
  3. Andrade, E., Cardoso, D. M., Pastén, G., Rojo, O., 10.1016/j.laa.2015.01.026, Linear Algebra Appl. 472 (2015), 81-86. (2015) Zbl1307.05136MR3314367DOI10.1016/j.laa.2015.01.026
  4. Barik, S., Lal, A. K., Pati, S., 10.1080/03081080600679029, Linear Multilinear Algebra 56 (2008), 597-610. (2008) Zbl1149.05029MR2457687DOI10.1080/03081080600679029
  5. Brouwer, A. E., Haemers, W. H., 10.1007/978-1-4614-1939-6, Universitext. Springer, New York (2012). (2012) Zbl1231.05001MR2882891DOI10.1007/978-1-4614-1939-6
  6. Cvetković, D. M., Rowlinson, P., Simić, S., 10.1017/CBO9780511801518, London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). (2010) Zbl1211.05002MR2571608DOI10.1017/CBO9780511801518
  7. Das, K. C., 10.1016/j.laa.2004.01.012, Linear Algebra Appl. 384 (2004), 155-169. (2004) Zbl1047.05027MR2055349DOI10.1016/j.laa.2004.01.012
  8. Doob, M., 10.1111/j.1749-6632.1970.tb56460.x, Ann. N. Y. Acad. Sci. 175 (1970), 104-110. (1970) Zbl0241.05112MR0263674DOI10.1111/j.1749-6632.1970.tb56460.x
  9. Faria, I., 10.1016/0024-3795(85)90281-2, Linear Algebra Appl. 64 (1985), 255-265. (1985) Zbl0559.05041MR0776531DOI10.1016/0024-3795(85)90281-2
  10. Grone, R., Merris, R., 10.21136/CMJ.1987.102192, Czech. Math. J. 37 (1987), 660-670. (1987) Zbl0681.05022MR0913997DOI10.21136/CMJ.1987.102192
  11. Grone, R., Merris, R., Sunder, V. S., 10.1137/0611016, SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. (1990) Zbl0733.05060MR1041245DOI10.1137/0611016
  12. Guo, J.-M., Feng, L., Zhang, J.-M., 10.1007/s10587-010-0063-x, Czech. Math. J. 60 (2010), 689-698. (2010) Zbl1224.05297MR2672410DOI10.1007/s10587-010-0063-x
  13. Huang, X., Huang, Q., 10.1016/j.laa.2016.09.043, Linear Algebra Appl. 512 (2017), 219-233. (2017) Zbl1348.05125MR3567523DOI10.1016/j.laa.2016.09.043
  14. Kirkland, S., 10.1080/03081080008818634, Linear Multilinear Algebra 47 (2000), 93-103. (2000) Zbl0947.05052MR1752168DOI10.1080/03081080008818634
  15. Lu, L., Huang, Q., Huang, X., 10.1016/j.laa.2017.05.044, Linear Algebra Appl. 530 (2017), 485-499. (2017) Zbl1367.05134MR3672973DOI10.1016/j.laa.2017.05.044
  16. Rowlinson, P., 10.1016/j.laa.2016.06.031, Linear Algebra Appl. 507 (2016), 462-473. (2016) Zbl1343.05096MR3536969DOI10.1016/j.laa.2016.06.031
  17. Dam, E. R. van, 10.1006/jctb.1998.1815, J. Comb. Theory, Ser. B 73 (1998), 101-118. (1998) Zbl0917.05044MR1631983DOI10.1006/jctb.1998.1815
  18. Dam, E. R. van, Koolen, J. H., Xia, Z.-J., 10.13001/1081-3810.2987, Electron. J. Linear Algebra 28 (2015), 12-24. (2015) Zbl1320.05082MR3386384DOI10.13001/1081-3810.2987

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.