On the multiplicity of Laplacian eigenvalues for unicyclic graphs
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 2, page 371-390
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWen, Fei, and Huang, Qiongxiang. "On the multiplicity of Laplacian eigenvalues for unicyclic graphs." Czechoslovak Mathematical Journal 72.2 (2022): 371-390. <http://eudml.org/doc/298311>.
@article{Wen2022,
abstract = {Let $G$ be a connected graph of order $n$ and $U$ a unicyclic graph with the same order. We firstly give a sharp bound for $m_\{G\}(\mu )$, the multiplicity of a Laplacian eigenvalue $\mu $ of $G$. As a straightforward result, $m_\{U\}(1)\le n-2$. We then provide two graph operations (i.e., grafting and shifting) on graph $G$ for which the value of $m_\{G\}(1)$ is nondecreasing. As applications, we get the distribution of $m_\{U\}(1)$ for unicyclic graphs on $n$ vertices. Moreover, for the two largest possible values of $m_\{U\}(1)\in \lbrace n-5,n-3\rbrace $, the corresponding graphs $U$ are completely determined.},
author = {Wen, Fei, Huang, Qiongxiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {unicyclic graph; Laplacian eigenvalue; multiplicity; bound},
language = {eng},
number = {2},
pages = {371-390},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the multiplicity of Laplacian eigenvalues for unicyclic graphs},
url = {http://eudml.org/doc/298311},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Wen, Fei
AU - Huang, Qiongxiang
TI - On the multiplicity of Laplacian eigenvalues for unicyclic graphs
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 371
EP - 390
AB - Let $G$ be a connected graph of order $n$ and $U$ a unicyclic graph with the same order. We firstly give a sharp bound for $m_{G}(\mu )$, the multiplicity of a Laplacian eigenvalue $\mu $ of $G$. As a straightforward result, $m_{U}(1)\le n-2$. We then provide two graph operations (i.e., grafting and shifting) on graph $G$ for which the value of $m_{G}(1)$ is nondecreasing. As applications, we get the distribution of $m_{U}(1)$ for unicyclic graphs on $n$ vertices. Moreover, for the two largest possible values of $m_{U}(1)\in \lbrace n-5,n-3\rbrace $, the corresponding graphs $U$ are completely determined.
LA - eng
KW - unicyclic graph; Laplacian eigenvalue; multiplicity; bound
UR - http://eudml.org/doc/298311
ER -
References
top- Akbari, S., Kiani, D., Mirzakhah, M., 10.1016/j.laa.2013.11.022, Linear Algebra Appl. 445 (2014), 18-28. (2014) Zbl1292.05164MR3151261DOI10.1016/j.laa.2013.11.022
- Akbari, S., Dam, E. R. van, Fakharan, M. H., 10.1016/j.laa.2019.10.011, Linear Algebra Appl. 586 (2020), 262-273. (2020) Zbl1429.05118MR4027756DOI10.1016/j.laa.2019.10.011
- Andrade, E., Cardoso, D. M., Pastén, G., Rojo, O., 10.1016/j.laa.2015.01.026, Linear Algebra Appl. 472 (2015), 81-86. (2015) Zbl1307.05136MR3314367DOI10.1016/j.laa.2015.01.026
- Barik, S., Lal, A. K., Pati, S., 10.1080/03081080600679029, Linear Multilinear Algebra 56 (2008), 597-610. (2008) Zbl1149.05029MR2457687DOI10.1080/03081080600679029
- Brouwer, A. E., Haemers, W. H., 10.1007/978-1-4614-1939-6, Universitext. Springer, New York (2012). (2012) Zbl1231.05001MR2882891DOI10.1007/978-1-4614-1939-6
- Cvetković, D. M., Rowlinson, P., Simić, S., 10.1017/CBO9780511801518, London Mathematical Society Student Texts 75. Cambridge University Press, Cambridge (2010). (2010) Zbl1211.05002MR2571608DOI10.1017/CBO9780511801518
- Das, K. C., 10.1016/j.laa.2004.01.012, Linear Algebra Appl. 384 (2004), 155-169. (2004) Zbl1047.05027MR2055349DOI10.1016/j.laa.2004.01.012
- Doob, M., 10.1111/j.1749-6632.1970.tb56460.x, Ann. N. Y. Acad. Sci. 175 (1970), 104-110. (1970) Zbl0241.05112MR0263674DOI10.1111/j.1749-6632.1970.tb56460.x
- Faria, I., 10.1016/0024-3795(85)90281-2, Linear Algebra Appl. 64 (1985), 255-265. (1985) Zbl0559.05041MR0776531DOI10.1016/0024-3795(85)90281-2
- Grone, R., Merris, R., 10.21136/CMJ.1987.102192, Czech. Math. J. 37 (1987), 660-670. (1987) Zbl0681.05022MR0913997DOI10.21136/CMJ.1987.102192
- Grone, R., Merris, R., Sunder, V. S., 10.1137/0611016, SIAM J. Matrix Anal. Appl. 11 (1990), 218-238. (1990) Zbl0733.05060MR1041245DOI10.1137/0611016
- Guo, J.-M., Feng, L., Zhang, J.-M., 10.1007/s10587-010-0063-x, Czech. Math. J. 60 (2010), 689-698. (2010) Zbl1224.05297MR2672410DOI10.1007/s10587-010-0063-x
- Huang, X., Huang, Q., 10.1016/j.laa.2016.09.043, Linear Algebra Appl. 512 (2017), 219-233. (2017) Zbl1348.05125MR3567523DOI10.1016/j.laa.2016.09.043
- Kirkland, S., 10.1080/03081080008818634, Linear Multilinear Algebra 47 (2000), 93-103. (2000) Zbl0947.05052MR1752168DOI10.1080/03081080008818634
- Lu, L., Huang, Q., Huang, X., 10.1016/j.laa.2017.05.044, Linear Algebra Appl. 530 (2017), 485-499. (2017) Zbl1367.05134MR3672973DOI10.1016/j.laa.2017.05.044
- Rowlinson, P., 10.1016/j.laa.2016.06.031, Linear Algebra Appl. 507 (2016), 462-473. (2016) Zbl1343.05096MR3536969DOI10.1016/j.laa.2016.06.031
- Dam, E. R. van, 10.1006/jctb.1998.1815, J. Comb. Theory, Ser. B 73 (1998), 101-118. (1998) Zbl0917.05044MR1631983DOI10.1006/jctb.1998.1815
- Dam, E. R. van, Koolen, J. H., Xia, Z.-J., 10.13001/1081-3810.2987, Electron. J. Linear Algebra 28 (2015), 12-24. (2015) Zbl1320.05082MR3386384DOI10.13001/1081-3810.2987
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.