Wiener index of graphs with fixed number of pendant or cut-vertices
Dinesh Pandey; Kamal Lochan Patra
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 2, page 411-431
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPandey, Dinesh, and Patra, Kamal Lochan. "Wiener index of graphs with fixed number of pendant or cut-vertices." Czechoslovak Mathematical Journal 72.2 (2022): 411-431. <http://eudml.org/doc/298315>.
@article{Pandey2022,
abstract = {The Wiener index of a connected graph is defined as the sum of the distances between all unordered pairs of its vertices. We characterize the graphs which extremize the Wiener index among all graphs on $n$ vertices with $k$ pendant vertices. We also characterize the graph which minimizes the Wiener index over the graphs on $n$ vertices with $s$ cut-vertices.},
author = {Pandey, Dinesh, Patra, Kamal Lochan},
journal = {Czechoslovak Mathematical Journal},
keywords = {cut-vertex; distance; pendant vertex; unicyclic graph; Wiener index},
language = {eng},
number = {2},
pages = {411-431},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Wiener index of graphs with fixed number of pendant or cut-vertices},
url = {http://eudml.org/doc/298315},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Pandey, Dinesh
AU - Patra, Kamal Lochan
TI - Wiener index of graphs with fixed number of pendant or cut-vertices
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 2
SP - 411
EP - 431
AB - The Wiener index of a connected graph is defined as the sum of the distances between all unordered pairs of its vertices. We characterize the graphs which extremize the Wiener index among all graphs on $n$ vertices with $k$ pendant vertices. We also characterize the graph which minimizes the Wiener index over the graphs on $n$ vertices with $s$ cut-vertices.
LA - eng
KW - cut-vertex; distance; pendant vertex; unicyclic graph; Wiener index
UR - http://eudml.org/doc/298315
ER -
References
top- Althöfer, I., 10.1016/0095-8956(90)90136-N, J. Comb. Theory, Ser. B 48 (1990), 140-142. (1990) Zbl0688.05045MR1047559DOI10.1016/0095-8956(90)90136-N
- Balakrishnan, R., Sridharan, N., Iyer, K. Viswanathan, 10.1016/j.aml.2007.10.003, Appl. Math. Lett. 21 (2008), 922-927. (2008) Zbl1152.05322MR2436525DOI10.1016/j.aml.2007.10.003
- Buckley, F., Harary, F., Distance in Graphs, Addison-Wesley, Redwood (1990). (1990) Zbl0688.05017MR1045632
- Dankelmann, P., 10.1016/0166-218X(94)90095-7, Discrete Appl. Math. 51 (1994), 75-83. (1994) Zbl0803.05020MR1279621DOI10.1016/0166-218X(94)90095-7
- Doyle, J. K., Graver, J. E., 10.1016/0012-365X(77)90144-3, Discrete Math. 17 (1977), 147-154. (1977) Zbl0361.05045MR0485476DOI10.1016/0012-365X(77)90144-3
- Entringer, R. C., Jackson, D. E., Snyder, D. A., 10.21136/CMJ.1976.101401, Czech. Math. J. 26 (1976), 283-296. (1976) Zbl0329.05112MR0543771DOI10.21136/CMJ.1976.101401
- Gutman, I., On distances in some bipartite graphs, Publ. Inst. Math., Nouv. Sér. 43 (1988), 3-8. (1988) Zbl0645.05046MR0962249
- Gutman, I., Cruz, R., Rada, J., 10.1016/j.dam.2013.08.024, Discrete Appl. Math. 162 (2014), 247-250. (2014) Zbl1298.05093MR3128526DOI10.1016/j.dam.2013.08.024
- Jelen, F., Triesch, E., 10.1016/s0166-218X(02)00195-6, Discrete Appl. Math. 125 (2003), 225-233. (2003) Zbl1009.05052MR1943114DOI10.1016/s0166-218X(02)00195-6
- Liu, H., Lu, M., A unified approach to extremal cacti for different indices, MATCH Commun. Math. Comput. Chem. 58 (2007), 183-194. (2007) Zbl1164.05043MR2335488
- Liu, H., Pan, X.-F., On the Wiener index of trees with fixed diameter, MATCH Commun. Math. Comput. Chem. 60 (2008), 85-94. (2008) Zbl1199.05092MR2423499
- Plesn{'ık, J., 10.1002/jgt.3190080102, J. Graph Theory 8 (1984), 1-21. (1984) Zbl0552.05048MR0732013DOI10.1002/jgt.3190080102
- Shi, R., The average distance of trees, Syst. Sci. Math. Sci. 6 (1993), 18-24. (1993) Zbl0802.05036MR1215913
- Stevanović, D., Maximizing Wiener index of graphs with fixed maximum degree, MATCH Commun. Math. Comput. Chem. 60 (2008), 71-83. (2008) Zbl1274.05137MR2423498
- Tan, S.-W., 10.1007/s12190-016-1063-2, J. Appl. Math. Comput. 56 (2018), 93-114. (2018) Zbl1390.05045MR3770377DOI10.1007/s12190-016-1063-2
- Tan, S.-W., Wang, Q.-L., Lin, Y., 10.1007/s12190-016-1022-y, J. Appl. Math. Comput. 55 (2017), 1-24. (2017) Zbl1373.05056MR3694934DOI10.1007/s12190-016-1022-y
- Wang, H., 10.1016/j.dam.2007.11.005, Discrete Appl. Math. 156 (2008), 2647-2654. (2008) Zbl1155.05020MR2451087DOI10.1016/j.dam.2007.11.005
- West, D. B., Introduction to Graph Theory, Prentice Hall, Upper Saddle River (1996). (1996) Zbl0845.05001MR1367739
- Wiener, H., 10.1021/ja01193a005, J. Am. Chem. Soc. 69 (1947), 17-20. (1947) DOI10.1021/ja01193a005
- Winkler, P., 10.1016/0166-218X(90)90137-2, Discrete Appl. Math. 27 (1990), 179-185. (1990) Zbl0742.05032MR1055599DOI10.1016/0166-218X(90)90137-2
- Yeh, Y.-N., Gutman, I., 10.1016/0012-365X(93)E0092-I, Discrete Math. 135 (1994), 359-365. (1994) Zbl0814.05033MR1310892DOI10.1016/0012-365X(93)E0092-I
- Yu, G., Feng, L., On the Wiener index of unicyclic graphs with given girth, Ars Comb. 94 (2010), 361-369. (2010) Zbl1238.92073MR2599747
- Zhang, X.-D., Xiang, Q.-Y., Xu, L.-Q., Pan, R.-Y., The Wiener index of trees with given degree sequences, MATCH Commun. Math. Comput. Chem. 60 (2008), 623-644. (2008) Zbl1195.05022MR2457876
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.