A note on measure-valued solutions to the full Euler system

Václav Mácha; Emil Wiedemann

Applications of Mathematics (2022)

  • Volume: 67, Issue: 4, page 419-430
  • ISSN: 0862-7940

Abstract

top
We construct two particular solutions of the full Euler system which emanate from the same initial data. Our aim is to show that the convex combination of these two solutions form a measure-valued solution which may not be approximated by a sequence of weak solutions. As a result, the weak* closure of the set of all weak solutions, considered as parametrized measures, is not equal to the space of all measure-valued solutions. This is in stark contrast with the incompressible Euler equations.

How to cite

top

Mácha, Václav, and Wiedemann, Emil. "A note on measure-valued solutions to the full Euler system." Applications of Mathematics 67.4 (2022): 419-430. <http://eudml.org/doc/298320>.

@article{Mácha2022,
abstract = {We construct two particular solutions of the full Euler system which emanate from the same initial data. Our aim is to show that the convex combination of these two solutions form a measure-valued solution which may not be approximated by a sequence of weak solutions. As a result, the weak* closure of the set of all weak solutions, considered as parametrized measures, is not equal to the space of all measure-valued solutions. This is in stark contrast with the incompressible Euler equations.},
author = {Mácha, Václav, Wiedemann, Emil},
journal = {Applications of Mathematics},
keywords = {measure-valued solution; compressible Euler system},
language = {eng},
number = {4},
pages = {419-430},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on measure-valued solutions to the full Euler system},
url = {http://eudml.org/doc/298320},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Mácha, Václav
AU - Wiedemann, Emil
TI - A note on measure-valued solutions to the full Euler system
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 419
EP - 430
AB - We construct two particular solutions of the full Euler system which emanate from the same initial data. Our aim is to show that the convex combination of these two solutions form a measure-valued solution which may not be approximated by a sequence of weak solutions. As a result, the weak* closure of the set of all weak solutions, considered as parametrized measures, is not equal to the space of all measure-valued solutions. This is in stark contrast with the incompressible Euler equations.
LA - eng
KW - measure-valued solution; compressible Euler system
UR - http://eudml.org/doc/298320
ER -

References

top
  1. Baba, H. Al, Klingenberg, C., Kreml, O., Mácha, V., Markfelder, S., 10.1137/18M1190872, SIAM J. Math. Anal. 52 (2020), 1729-1760. (2020) Zbl1437.35474MR4083343DOI10.1137/18M1190872
  2. Y. Brenier, C. De Lellis, L. Székelyhidi, Jr., 10.1007/s00220-011-1267-0, Commun. Math. Phys. 305 (2011), 351-361. (2011) Zbl1219.35182MR2805464DOI10.1007/s00220-011-1267-0
  3. Březina, J., Existence of a measure-valued solutions to a complete Euler system for a perfect gas, RIMS Kokyuroku 2020 (2020), Article ID 2144, 24 pages Available at http://hdl.handle.net/2433/254987. (2020) 
  4. Březina, J., Feireisl, E., 10.2969/jmsj/77337733, J. Math. Soc. Japan 70 (2018), 1227-1245. (2018) Zbl1408.35134MR3868717DOI10.2969/jmsj/77337733
  5. Březina, J., Feireisl, E., Novotný, A., 10.1137/18M1223022, SIAM J. Math. Anal. 52 (2020), 1761-1785. (2020) Zbl1439.35365MR4083344DOI10.1137/18M1223022
  6. Chiodaroli, E., Lellis, C. De, Kreml, O., 10.1002/cpa.21537, Commun. Pure Appl. Math. 68 (2015), 1157-1190. (2015) Zbl1323.35137MR3352460DOI10.1002/cpa.21537
  7. Chiodaroli, E., Feireisl, E., Kreml, O., Wiedemann, E., 10.1007/s10231-016-0629-9, Ann. Mat. Pura Appl. (4) 196 (2017), 1557-1572. (2017) Zbl1382.35201MR3673680DOI10.1007/s10231-016-0629-9
  8. DiPerna, R. J., Majda, A. J., 10.1007/BF01214424, Commun. Math. Phys. 108 (1987), 667-689. (1987) Zbl0626.35059MR0877643DOI10.1007/BF01214424
  9. Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E., 10.1007/s00526-016-1089-1, Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 141, 20 pages. (2016) Zbl1360.35143MR3567640DOI10.1007/s00526-016-1089-1
  10. Fjordholm, U. S., Mishra, S., Tadmor, E., 10.1017/S0962492916000088, Acta Numerica 25 (2016), 567-679. (2016) Zbl1382.76001MR3509212DOI10.1017/S0962492916000088
  11. Frisch, U., 10.1017/CBO9781139170666, Cambridge University Press, Cambridge (1995). (1995) Zbl0832.76001MR1428905DOI10.1017/CBO9781139170666
  12. Gallenmüller, D., Wiedemann, E., 10.1016/j.jde.2020.09.028, J. Differ. Equations 271 (2021), 979-1006. (2021) Zbl07283605MR4154934DOI10.1016/j.jde.2020.09.028
  13. Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E., 10.1088/0951-7715/28/11/3873, Nonlinearity 28 (2015), 3873-3890. (2015) Zbl1336.35291MR3424896DOI10.1088/0951-7715/28/11/3873
  14. Kinderlehrer, D., Pedregal, P., 10.1007/BF00375279, Arch. Ration. Mech. Anal. 115 (1991), 329-365. (1991) Zbl0754.49020MR1120852DOI10.1007/BF00375279
  15. Kinderlehrer, D., Pedregal, P., 10.1007/BF02921593, J. Geom. Anal. 4 (1994), 59-90. (1994) Zbl0808.46046MR1274138DOI10.1007/BF02921593
  16. Klingenberg, C., Kreml, O., Mácha, V., Markfelder, S., 10.1088/1361-6544/aba3b2, Nonlinearity 33 (2020), 6517-6540. (2020) Zbl07278317MR4164684DOI10.1088/1361-6544/aba3b2
  17. Smoller, J., 10.1007/978-1-4612-0873-0, Grundlehren der Mathematischen Wissenschaften 258. Springer, New York (1994). (1994) Zbl0807.35002MR1301779DOI10.1007/978-1-4612-0873-0
  18. L. Székelyhidi, Jr., E. Wiedemann, 10.1007/s00205-012-0540-5, Arch. Ration. Mech. Anal. 206 (2012), 333-366. (2012) Zbl1256.35072MR2968597DOI10.1007/s00205-012-0540-5
  19. Wiedemann, E., Weak-strong uniqueness in fluid dynamics, Partial Differential Equations in Fluid Mechanics London Mathematical Society Lecture Note Series 452. Cambridge University Press, Cambridge (2018), 289-326. (2018) Zbl1408.35158MR3838055

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.