A note on measure-valued solutions to the full Euler system
Applications of Mathematics (2022)
- Volume: 67, Issue: 4, page 419-430
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMácha, Václav, and Wiedemann, Emil. "A note on measure-valued solutions to the full Euler system." Applications of Mathematics 67.4 (2022): 419-430. <http://eudml.org/doc/298320>.
@article{Mácha2022,
abstract = {We construct two particular solutions of the full Euler system which emanate from the same initial data. Our aim is to show that the convex combination of these two solutions form a measure-valued solution which may not be approximated by a sequence of weak solutions. As a result, the weak* closure of the set of all weak solutions, considered as parametrized measures, is not equal to the space of all measure-valued solutions. This is in stark contrast with the incompressible Euler equations.},
author = {Mácha, Václav, Wiedemann, Emil},
journal = {Applications of Mathematics},
keywords = {measure-valued solution; compressible Euler system},
language = {eng},
number = {4},
pages = {419-430},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on measure-valued solutions to the full Euler system},
url = {http://eudml.org/doc/298320},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Mácha, Václav
AU - Wiedemann, Emil
TI - A note on measure-valued solutions to the full Euler system
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 419
EP - 430
AB - We construct two particular solutions of the full Euler system which emanate from the same initial data. Our aim is to show that the convex combination of these two solutions form a measure-valued solution which may not be approximated by a sequence of weak solutions. As a result, the weak* closure of the set of all weak solutions, considered as parametrized measures, is not equal to the space of all measure-valued solutions. This is in stark contrast with the incompressible Euler equations.
LA - eng
KW - measure-valued solution; compressible Euler system
UR - http://eudml.org/doc/298320
ER -
References
top- Baba, H. Al, Klingenberg, C., Kreml, O., Mácha, V., Markfelder, S., 10.1137/18M1190872, SIAM J. Math. Anal. 52 (2020), 1729-1760. (2020) Zbl1437.35474MR4083343DOI10.1137/18M1190872
- Y. Brenier, C. De Lellis, L. Székelyhidi, Jr., 10.1007/s00220-011-1267-0, Commun. Math. Phys. 305 (2011), 351-361. (2011) Zbl1219.35182MR2805464DOI10.1007/s00220-011-1267-0
- Březina, J., Existence of a measure-valued solutions to a complete Euler system for a perfect gas, RIMS Kokyuroku 2020 (2020), Article ID 2144, 24 pages Available at http://hdl.handle.net/2433/254987. (2020)
- Březina, J., Feireisl, E., 10.2969/jmsj/77337733, J. Math. Soc. Japan 70 (2018), 1227-1245. (2018) Zbl1408.35134MR3868717DOI10.2969/jmsj/77337733
- Březina, J., Feireisl, E., Novotný, A., 10.1137/18M1223022, SIAM J. Math. Anal. 52 (2020), 1761-1785. (2020) Zbl1439.35365MR4083344DOI10.1137/18M1223022
- Chiodaroli, E., Lellis, C. De, Kreml, O., 10.1002/cpa.21537, Commun. Pure Appl. Math. 68 (2015), 1157-1190. (2015) Zbl1323.35137MR3352460DOI10.1002/cpa.21537
- Chiodaroli, E., Feireisl, E., Kreml, O., Wiedemann, E., 10.1007/s10231-016-0629-9, Ann. Mat. Pura Appl. (4) 196 (2017), 1557-1572. (2017) Zbl1382.35201MR3673680DOI10.1007/s10231-016-0629-9
- DiPerna, R. J., Majda, A. J., 10.1007/BF01214424, Commun. Math. Phys. 108 (1987), 667-689. (1987) Zbl0626.35059MR0877643DOI10.1007/BF01214424
- Feireisl, E., Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E., 10.1007/s00526-016-1089-1, Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 141, 20 pages. (2016) Zbl1360.35143MR3567640DOI10.1007/s00526-016-1089-1
- Fjordholm, U. S., Mishra, S., Tadmor, E., 10.1017/S0962492916000088, Acta Numerica 25 (2016), 567-679. (2016) Zbl1382.76001MR3509212DOI10.1017/S0962492916000088
- Frisch, U., 10.1017/CBO9781139170666, Cambridge University Press, Cambridge (1995). (1995) Zbl0832.76001MR1428905DOI10.1017/CBO9781139170666
- Gallenmüller, D., Wiedemann, E., 10.1016/j.jde.2020.09.028, J. Differ. Equations 271 (2021), 979-1006. (2021) Zbl07283605MR4154934DOI10.1016/j.jde.2020.09.028
- Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E., 10.1088/0951-7715/28/11/3873, Nonlinearity 28 (2015), 3873-3890. (2015) Zbl1336.35291MR3424896DOI10.1088/0951-7715/28/11/3873
- Kinderlehrer, D., Pedregal, P., 10.1007/BF00375279, Arch. Ration. Mech. Anal. 115 (1991), 329-365. (1991) Zbl0754.49020MR1120852DOI10.1007/BF00375279
- Kinderlehrer, D., Pedregal, P., 10.1007/BF02921593, J. Geom. Anal. 4 (1994), 59-90. (1994) Zbl0808.46046MR1274138DOI10.1007/BF02921593
- Klingenberg, C., Kreml, O., Mácha, V., Markfelder, S., 10.1088/1361-6544/aba3b2, Nonlinearity 33 (2020), 6517-6540. (2020) Zbl07278317MR4164684DOI10.1088/1361-6544/aba3b2
- Smoller, J., 10.1007/978-1-4612-0873-0, Grundlehren der Mathematischen Wissenschaften 258. Springer, New York (1994). (1994) Zbl0807.35002MR1301779DOI10.1007/978-1-4612-0873-0
- L. Székelyhidi, Jr., E. Wiedemann, 10.1007/s00205-012-0540-5, Arch. Ration. Mech. Anal. 206 (2012), 333-366. (2012) Zbl1256.35072MR2968597DOI10.1007/s00205-012-0540-5
- Wiedemann, E., Weak-strong uniqueness in fluid dynamics, Partial Differential Equations in Fluid Mechanics London Mathematical Society Lecture Note Series 452. Cambridge University Press, Cambridge (2018), 289-326. (2018) Zbl1408.35158MR3838055
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.