The effect of a magnetic field on the onset of Bénard convection in variable viscosity couple-stress fluids using classical Lorenz model

Venkatesh Ramachandramurthy; Nagasundar Kavitha; Agrahara Sanjeevmurthy Aruna

Applications of Mathematics (2022)

  • Volume: 67, Issue: 4, page 509-523
  • ISSN: 0862-7940

Abstract

top
The Rayleigh-Bénard convection for a couple-stress fluid with a thermorheological effect in the presence of an applied magnetic field is studied using both linear and non-linear stability analysis. This problem discusses the three important mechanisms that control the onset of convection; namely, suspended particles, an applied magnetic field, and variable viscosity. It is found that the thermorheological parameter, the couple-stress parameter, and the Chandrasekhar number influence the onset of convection. The effect of an increase in the thermorheological parameter leads to destabilization in the system, while the Chandrasekhar number and the couple-stress parameter have the opposite effect. The generalized Lorenz's model of the problem is essentially the classical Lorenz model but with coefficients involving the impact of three mechanisms as discussed earlier. The classical Lorenz model is a fifth-order autonomous system and found to be analytically intractable. Therefore, the Lorenz system is solved numerically using the Runge-Kutta method in order to quantify heat transfer. An effect of increasing the thermorheological parameter is found to enhance heat transfer, while the couple-stress parameter and the Chandrasekhar number diminishes the same.

How to cite

top

Ramachandramurthy, Venkatesh, Kavitha, Nagasundar, and Aruna, Agrahara Sanjeevmurthy. "The effect of a magnetic field on the onset of Bénard convection in variable viscosity couple-stress fluids using classical Lorenz model." Applications of Mathematics 67.4 (2022): 509-523. <http://eudml.org/doc/298321>.

@article{Ramachandramurthy2022,
abstract = {The Rayleigh-Bénard convection for a couple-stress fluid with a thermorheological effect in the presence of an applied magnetic field is studied using both linear and non-linear stability analysis. This problem discusses the three important mechanisms that control the onset of convection; namely, suspended particles, an applied magnetic field, and variable viscosity. It is found that the thermorheological parameter, the couple-stress parameter, and the Chandrasekhar number influence the onset of convection. The effect of an increase in the thermorheological parameter leads to destabilization in the system, while the Chandrasekhar number and the couple-stress parameter have the opposite effect. The generalized Lorenz's model of the problem is essentially the classical Lorenz model but with coefficients involving the impact of three mechanisms as discussed earlier. The classical Lorenz model is a fifth-order autonomous system and found to be analytically intractable. Therefore, the Lorenz system is solved numerically using the Runge-Kutta method in order to quantify heat transfer. An effect of increasing the thermorheological parameter is found to enhance heat transfer, while the couple-stress parameter and the Chandrasekhar number diminishes the same.},
author = {Ramachandramurthy, Venkatesh, Kavitha, Nagasundar, Aruna, Agrahara Sanjeevmurthy},
journal = {Applications of Mathematics},
keywords = {Rayleigh-Bénard convection; Boussinesq-Stokes suspension; variable viscosity; magnetoconvection; Lorenz model},
language = {eng},
number = {4},
pages = {509-523},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The effect of a magnetic field on the onset of Bénard convection in variable viscosity couple-stress fluids using classical Lorenz model},
url = {http://eudml.org/doc/298321},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Ramachandramurthy, Venkatesh
AU - Kavitha, Nagasundar
AU - Aruna, Agrahara Sanjeevmurthy
TI - The effect of a magnetic field on the onset of Bénard convection in variable viscosity couple-stress fluids using classical Lorenz model
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 4
SP - 509
EP - 523
AB - The Rayleigh-Bénard convection for a couple-stress fluid with a thermorheological effect in the presence of an applied magnetic field is studied using both linear and non-linear stability analysis. This problem discusses the three important mechanisms that control the onset of convection; namely, suspended particles, an applied magnetic field, and variable viscosity. It is found that the thermorheological parameter, the couple-stress parameter, and the Chandrasekhar number influence the onset of convection. The effect of an increase in the thermorheological parameter leads to destabilization in the system, while the Chandrasekhar number and the couple-stress parameter have the opposite effect. The generalized Lorenz's model of the problem is essentially the classical Lorenz model but with coefficients involving the impact of three mechanisms as discussed earlier. The classical Lorenz model is a fifth-order autonomous system and found to be analytically intractable. Therefore, the Lorenz system is solved numerically using the Runge-Kutta method in order to quantify heat transfer. An effect of increasing the thermorheological parameter is found to enhance heat transfer, while the couple-stress parameter and the Chandrasekhar number diminishes the same.
LA - eng
KW - Rayleigh-Bénard convection; Boussinesq-Stokes suspension; variable viscosity; magnetoconvection; Lorenz model
UR - http://eudml.org/doc/298321
ER -

References

top
  1. Aruna, A. S., 10.1007/s12043-020-02007-7, Pramana 94 (2020), Article ID 153, 10 pages. (2020) DOI10.1007/s12043-020-02007-7
  2. Busse, F. H., Frick, H., 10.1017/S0022112085000222, J. Fluid Mech. 150 (1985), 451-465. (1985) Zbl0588.76073DOI10.1017/S0022112085000222
  3. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, International Series of Monographs on Physics. Clarendon Press, Oxford (1961). (1961) Zbl0142.44103MR128226
  4. Eringen, A. C., 10.1512/iumj.1967.16.16001, J. Math. Mech. 16 (1966), 1-18. (1966) MR0204005DOI10.1512/iumj.1967.16.16001
  5. Gebhart, B., Jaluria, Y., Mahajan, R. L., Sammakia, B., Buoyancy Induced Flows and Transport, Springer, Berlin (1988). (1988) Zbl0699.76001
  6. Hassan, M. A., Pathak, M., Khan, M. K., 10.1016/j.jnnfm.2015.10.003, J. Non-Newton. Fluid Mech. 226 (2015), 32-45. (2015) MR3426008DOI10.1016/j.jnnfm.2015.10.003
  7. Hirayama, O., Takaki, R., 10.1016/0169-5983(93)90103-H, Fluid Dyn. Res. 12 (1993), 2855-2867. (1993) DOI10.1016/0169-5983(93)90103-H
  8. Maruthamanikandan, S., Thomas, N. M., Mathew, S., 10.1088/1742-6596/1139/1/012024, J. Phys., Conf. Ser. 1139 (2018), Article ID 012024, 12 pages. (2018) DOI10.1088/1742-6596/1139/1/012024
  9. Platten, J. K., Legros, J. C., 10.1007/978-3-642-82095-3, Springer, Berlin (1984). (1984) Zbl0545.76048DOI10.1007/978-3-642-82095-3
  10. Rajagopal, K. R., Ruzicka, M., Srinivasa, A. R., 10.1142/S0218202596000481, Math. Models Methods Appl. Sci. 6 (1996), 1157-1167. (1996) Zbl0883.76078MR1428150DOI10.1142/S0218202596000481
  11. Rajagopal, R., Shelin, E. J., Sangeetha, K. G., 10.14445/22315373/IJMTT-V54P558, Int. J. Math. Trends Tech. 54 (2018), 477-484. (2018) DOI10.14445/22315373/IJMTT-V54P558
  12. Ramachandramurthy, V., Aruna, A. S., Kavitha, N., 10.1007/s40819-020-0781-1, Int. J. Appl. Comput. Math. 6 (2020), Article ID 27, 14 pages. (2020) Zbl07322692MR4062157DOI10.1007/s40819-020-0781-1
  13. Ramachandramurthy, V., Uma, D., Kavitha, N., Effect of non-inertial acceleration on heat transport by Rayleigh-Bénard magnetoconvection in Boussinesq-Stokes suspension with variable heat source, Int. J. Appl. Eng. Res. 14 (2019), 2126-2123. (2019) 
  14. Riahi, N., 10.1143/JPSJ.53.4169, J. Phys. Soc. Japan 53 (1984), 4169-4178. (1984) MR0779210DOI10.1143/JPSJ.53.4169
  15. Saffman, P. G., 10.1017/S0022112062000555, J. Fluid Mech. 13 (1962), 120-128. (1962) Zbl0105.39605MR0137418DOI10.1017/S0022112062000555
  16. Sekhar, G. N., Jayalatha, G., Prakash, R., 10.1007/s40819-017-0313-9, Int. J. Appl. Comput. Math. 3 (2017), 3539-3559. (2017) Zbl1397.76124MR3716003DOI10.1007/s40819-017-0313-9
  17. Severin, J., Herwig, H., 10.1007/PL00001494, Z. Angew. Math. Phys. 50 (1999), 375-386. (1999) Zbl0926.76045MR1697713DOI10.1007/PL00001494
  18. Siddheshwar, P. G., 10.1007/BF02704425, Pramana 62 (2004), 61-68. (2004) DOI10.1007/BF02704425
  19. Siddheshwar, P. G., Pranesh, S., 10.1016/S1270-9638(01)01144-0, Aerosp. Sci. Technol. 6 (2002), 105-114. (2002) Zbl1006.76545DOI10.1016/S1270-9638(01)01144-0
  20. Siddheshwar, P. G., Ramachandramurthy, V., Uma, D., 10.1016/j.ijengsci.2011.05.020, Int. J. Eng. Sci. 49 (2011), 1078-1094. (2011) Zbl1423.76504DOI10.1016/j.ijengsci.2011.05.020
  21. Siddheshwar, P. G., Siddabasappa, C., 10.1007/s11242-017-0943-8, Transp. Porous Media 120 (2017), 605-631. (2017) MR3722204DOI10.1007/s11242-017-0943-8
  22. Siddheshwar, P. G., Titus, P. S., 10.1115/1.4024943, J. Heat Transfer 135 (2013), Article ID 122502, 12 pages. (2013) DOI10.1115/1.4024943
  23. Somerscales, E. F. C., Dougherty, T. S., 10.1017/S0022112070001593, J. Fluid Mech. 42 (1970), 755-768. (1970) DOI10.1017/S0022112070001593
  24. Stengel, K. C., Oliver, D. S., Booker, J. R., 10.1017/S0022112082002821, J. Fluid Mech. 120 (1982), 411-431. (1982) Zbl0534.76093DOI10.1017/S0022112082002821
  25. Stokes, V. K., 10.1007/978-3-642-82351-0, Theories of Fluids with Microstructure Springer, Berlin (1966), 34-80. (1966) DOI10.1007/978-3-642-82351-0
  26. Torrance, K. E., Turcotte, D. L., 10.1017/S002211207100096X, J. Fluid Mech. 47 (1971), 113-125. (1971) DOI10.1017/S002211207100096X
  27. Walicki, E., Walicka, A., Inertia effect in the squeeze film of a couple-stress fluid in biological bearings, Appl. Mech. Eng. 4 (1999), 363-373. (1999) Zbl0971.76108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.