Remotely -almost periodic type functions in
Archivum Mathematicum (2022)
- Volume: 058, Issue: 2, page 85-104
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topKostić, Marco, and Kumar, Vipin. "Remotely $c$-almost periodic type functions in ${\mathbb {R}}^{n}$." Archivum Mathematicum 058.2 (2022): 85-104. <http://eudml.org/doc/298323>.
@article{Kostić2022,
abstract = {In this paper, we relate the notions of remote almost periodicity and quasi-asymptotical almost periodicity; in actual fact, we observe that a remotely almost periodic function is nothing else but a bounded, uniformly continuous quasi-asymptotically almost periodic function. We introduce and analyze several new classes of remotely $c$-almost periodic functions in $\{\mathbb \{R\}\}^\{n\},$ slowly oscillating functions in $\{\mathbb \{R\}\}^\{n\},$ and further analyze the recently introduced class of quasi-asymptotically $c$-almost periodic functions in $\{\mathbb \{R\}\}^\{n\}.$ We provide certain applications of our theoretical results to the abstract Volterra integro-differential equations and the ordinary differential equations.},
author = {Kostić, Marco, Kumar, Vipin},
journal = {Archivum Mathematicum},
keywords = {remotely $c$-almost periodic functions in $\{\mathbb \{R\}\}^\{n\}$; slowly oscillating functions in $\{\mathbb \{R\}\}^\{n\}$; quasi-asymptotically $c$-almost periodic functions in $\{\mathbb \{R\}\}^\{n\}$; abstract Volterra integro-differential equations; Richard-Chapman ordinary differential equation with external perturbation},
language = {eng},
number = {2},
pages = {85-104},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Remotely $c$-almost periodic type functions in $\{\mathbb \{R\}\}^\{n\}$},
url = {http://eudml.org/doc/298323},
volume = {058},
year = {2022},
}
TY - JOUR
AU - Kostić, Marco
AU - Kumar, Vipin
TI - Remotely $c$-almost periodic type functions in ${\mathbb {R}}^{n}$
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 2
SP - 85
EP - 104
AB - In this paper, we relate the notions of remote almost periodicity and quasi-asymptotical almost periodicity; in actual fact, we observe that a remotely almost periodic function is nothing else but a bounded, uniformly continuous quasi-asymptotically almost periodic function. We introduce and analyze several new classes of remotely $c$-almost periodic functions in ${\mathbb {R}}^{n},$ slowly oscillating functions in ${\mathbb {R}}^{n},$ and further analyze the recently introduced class of quasi-asymptotically $c$-almost periodic functions in ${\mathbb {R}}^{n}.$ We provide certain applications of our theoretical results to the abstract Volterra integro-differential equations and the ordinary differential equations.
LA - eng
KW - remotely $c$-almost periodic functions in ${\mathbb {R}}^{n}$; slowly oscillating functions in ${\mathbb {R}}^{n}$; quasi-asymptotically $c$-almost periodic functions in ${\mathbb {R}}^{n}$; abstract Volterra integro-differential equations; Richard-Chapman ordinary differential equation with external perturbation
UR - http://eudml.org/doc/298323
ER -
References
top- Alvarez, E., Castillo, S., Pinto, M., -pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells, Bound. Value Probl. 106 (2019), 1–20. (2019) MR3974664
- Alvarez, E., Castillo, S., Pinto, M., 10.1002/mma.5880, Math. Methods Appl. Sci. 43 (2020), 305–319. (2020) MR4044240DOI10.1002/mma.5880
- Alvarez, E., Gómez, A., Pinto, M., 10.14232/ejqtde.2018.1.16, Electron. J. Qual. Theory Differ. Equ. 16 (2018), 1–8. (2018) MR3789407DOI10.14232/ejqtde.2018.1.16
- Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F., Vector-valued Laplace transforms and Cauchy problems, Birkhäuser, Springer Basel AG, 2001. (2001) MR2798103
- Besicovitch, A.S., Almost Periodic Functions, Dover Publ., New York, 1954. (1954) MR0068029
- Blot, J., Cieutat, P., N’Guérékata, G.M., S-asymptotically -periodic functions and applications to evolution equations, -asymptotically -periodic functions and applications to evolution equations, African Diaspora J. Math. 12 (2011), 113–121. (2011) MR2847308
- Brindle, D., -asymptotically -periodic functions and sequences and applications to evolution equations, Ph.D. thesis, Morgan State University, 2019, https://mdsoar.org/handle/11603/17680. (2019) MR4071576
- Chang, Y.-K., Wei, Y., 10.1007/s10473-021-0206-1, Acta Math. Sci. 41B (2021), 413–425. (2021) MR4206851DOI10.1007/s10473-021-0206-1
- Chávez, A., Khalil, K., Kostić, M., Pinto, M., Multi-dimensional almost periodic type functions and applications, submitted 2020, arXiv:2012.00543.
- Chávez, A., Khalil, K., Kostić, M., Pinto, M., 10.1007/s00574-022-00284-x, Bull. Braz. Math. Soc. (N.S.) (2022), 1–51, https/doi.org/10.1007/s00574-022-00284-x. (2022) MR4458789DOI10.1007/s00574-022-00284-x
- Cuevas, C., de Souza, J.C., 10.1016/j.na.2009.09.007, Nonlinear Anal. 72 (2010), 1683–1689. (2010) MR2577568DOI10.1016/j.na.2009.09.007
- Diagana, T., Almost automorphic type and almost periodic type functions in abstract spaces, Springer-Verlag, New York, 2013. (2013) MR3098423
- Dimbour, W., Manou-Ab, S.M., 10.1007/s00009-018-1071-61660-5446/18/010001-18, Mediterranean J. Math. 15 (1) (2018), 18 pp., https://doi.org/10.1007/s00009-018-1071-61660-5446/18/010001-18. (2018) MR3750300DOI10.1007/s00009-018-1071-61660-5446/18/010001-18
- Fink, A.M., Almost periodic differential equations, Springer-Verlag, Berlin, 1974. (1974) MR0460799
- Friedman, A., Partial differential equations of parabolic type, Prentice Hall, Englewood Cliffs, NJ, 1964, xiv+347 pp. (1964) MR0181836
- Garcia, S.R., Remembering Donald Sarason (1933-2017), Notices Amer. Math. Soc. 65 (2018), 195–200. (2018) MR3751316
- Haraux, A., Souplet, P., 10.1007/s00041-004-8012-4, J. Fourier Anal. Appl. 10 (2004), 217–220. (2004) MR2054309DOI10.1007/s00041-004-8012-4
- Henríquez, H.R., Pierri, M., Táboas, P., 10.1016/j.jmaa.2008.02.023, -asymptotically -periodic functions on Banach spaces and applications, J. Math. Appl. Anal. 343 (2008), 1119–1130. (2008) MR2417129DOI10.1016/j.jmaa.2008.02.023
- Khalladi, M.T., Kostić, M., Pinto, M., Rahmani, A., Velinov, D., Generalized -almost periodic functions and applications, Bull. Int. Math. Virtual Inst. 11 (2021), 283–293. (2021) MR4187070
- Khalladi, M.T., Kostić, M., Rahmani, A., Pinto, M., Velinov, D., 10.1515/msds-2020-0111, Nonauton. Dyn. Syst. 7 (2020), 176–193. (2020) MR4185794DOI10.1515/msds-2020-0111
- Kostić, M., Multi-dimensional -almost periodic type functions and applications, Electron. J. Differential Equations, in press, aXiv:2012.15735. MR4252727
- Kostić, M., Generalized semigroups and cosine functions, Mathematical Institute SANU, Belgrade, 2011. (2011) MR2790849
- Kostić, M., Almost periodic and almost automorphic type solutions to integro-differential equations, W. de Gruyter, Berlin, 2019. (2019) MR3931753
- Kostić, M., 10.5817/AM2021-4-221, Arch. Math. (Brno) 57 (2021), 221–253. (2021) MR4346112DOI10.5817/AM2021-4-221
- Kostić, M., 10.1515/msds-2020-0130, Nonauton. Dyn. Syst. 8 (2021), 136–151. (2021) MR4252727DOI10.1515/msds-2020-0130
- Kostić, M., 10.1007/s00574-020-00197-7, Bull. Braz. Math. Soc. (N.S.) 52 (2021), 183–212. (2021) MR4253402DOI10.1007/s00574-020-00197-7
- Kostić, M., 10.3934/eect.2021008, Evol. Equ. Control Theory 11 (2) (2022), 457–486. (2022) MR4376332DOI10.3934/eect.2021008
- Kostić, M., Selected topics in almost periodicity, W. de Gruyter, Berlin, 2022. (2022)
- Kovanko, A.S., Sur la compacié des systémes de fonctions presque-périodiques généralisées de H. Wey, C.R. (Doklady) Ac. Sc. URSS 43 (1944), 275–276. (1944) MR0012148
- Levitan, M., Almost periodic functions, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953, 396 pp. (in Russian). (1953) MR0060629
- Maulén, C., Castillo, S., Kostić, M., Pinto, M., 10.1155/2021/9985454, J. Math. 2021 (2021), 9 pp., Article ID 9985454, 9 pp., https://doi.org/10.1155/2021/9985454. (2021) MR4265296DOI10.1155/2021/9985454
- N’Guérékata, G.M., Almost automorphic and almost periodic functions in abstract spaces, Kluwer Acad. Publ. Dordrecht, 2001. (2001) MR1880351
- Oueama-Guengai, E.R., N’Guérékata, G.M., 10.1002/mma.5062, Math. Methods Appl. Sci. 41 (2018), 9116–9122. (2018) MR3897769DOI10.1002/mma.5062
- Pankov, A.A., Bounded and almost periodic solutions of nonlinear operator differential equations, Kluwer Acad. Publ., Dordrecht, 1990. (1990) MR1120781
- Rabinovich, V.S., Roch, S., 10.1088/0305-4470/39/26/007, J. Phys. A 39 (2006), 8377–8394. (2006) MR2238507DOI10.1088/0305-4470/39/26/007
- Sarason, D., 10.1512/iumj.1977.26.26066, Indiana Univ. Math. J. 26 (1977), 817–838. (1977) MR0463968DOI10.1512/iumj.1977.26.26066
- Sarason, D., 10.1090/conm/032/769512, Contemp. Math. 32 (1984), 237–242. (1984) MR0769512DOI10.1090/conm/032/769512
- Sarason, D., The Banach algebra of slowly oscillating functions, Houston J. Math. 33 (4) (2007), 1161–1182. (2007) MR2350087
- Xie, R., Zhang, C., 10.1155/2015/953540, J. Function Spaces 2015 (2015), 10 pp., Article ID 953540, http://dx.doi.org/10.1155/2015/953540. (2015) MR3326682DOI10.1155/2015/953540
- Yang, F., Zhang, C., 10.1155/2010/471491, Bound. Value Probl. 2010 (2010), 12 pp., Article ID 471491, doi:10.1155/2010/471491. (2010) MR2753238DOI10.1155/2010/471491
- Yang, F., Zhang, C., 10.11650/twjm/1500406160, Taiwanese J. Math. 15 (2011), 43–57. (2011) MR2780270DOI10.11650/twjm/1500406160
- Zaidman, S., Almost-periodic functions in abstract spaces, Pitman Research Notes in Math., vol. 126, Pitman, Boston, 1985. (1985) MR0790316
- Zhang, C., Guo, Y., 10.1155/2007/60239, J. Inequal. Appl. 2007 (2007), 9 pp., Article ID 60239, doi:10.1155/2007/60239. (2007) MR2304457DOI10.1155/2007/60239
- Zhang, C., Jiang, L., 10.1016/j.na.2005.10.036, Nonlinear Anal. 65 (2006), 1613–1623. (2006) MR2248688DOI10.1016/j.na.2005.10.036
- Zhang, C., Jiang, L., 10.1016/j.aml.2007.08.007, Appl. Math. Lett. 21 (2008), 761–768. (2008) MR2436161DOI10.1016/j.aml.2007.08.007
- Zhang, S., Piao, D., 10.5402/2011/415358, ISRN Math. Anal. 2011 (2011), 13 pp., Article ID 415358, doi:10.5402/2011/415358. (2011) MR2772323DOI10.5402/2011/415358
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.