Initial coefficients for generalized subclasses of bi-univalent functions defined with subordination

Gagandeep Singh; Gurcharanjit Singh; Gurmeet Singh

Archivum Mathematicum (2022)

  • Volume: 058, Issue: 2, page 105-113
  • ISSN: 0044-8753

Abstract

top
This paper is concerned with certain generalized subclasses of bi-univalent functions defined with subordination in the open unit disc E = z : z < 1 . The bounds for the initial coefficients for the functions in these classes are studied. The earlier known results follow as special cases.

How to cite

top

Singh, Gagandeep, Singh, Gurcharanjit, and Singh, Gurmeet. "Initial coefficients for generalized subclasses of bi-univalent functions defined with subordination." Archivum Mathematicum 058.2 (2022): 105-113. <http://eudml.org/doc/298325>.

@article{Singh2022,
abstract = {This paper is concerned with certain generalized subclasses of bi-univalent functions defined with subordination in the open unit disc $E=\left\rbrace z:\mid z \mid <1\right\lbrace $. The bounds for the initial coefficients for the functions in these classes are studied. The earlier known results follow as special cases.},
author = {Singh, Gagandeep, Singh, Gurcharanjit, Singh, Gurmeet},
journal = {Archivum Mathematicum},
keywords = {coefficient estimates; analytic functions; univalent functions; bi-univalent functions; generalized Sãlãgean operator; subordination},
language = {eng},
number = {2},
pages = {105-113},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Initial coefficients for generalized subclasses of bi-univalent functions defined with subordination},
url = {http://eudml.org/doc/298325},
volume = {058},
year = {2022},
}

TY - JOUR
AU - Singh, Gagandeep
AU - Singh, Gurcharanjit
AU - Singh, Gurmeet
TI - Initial coefficients for generalized subclasses of bi-univalent functions defined with subordination
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 2
SP - 105
EP - 113
AB - This paper is concerned with certain generalized subclasses of bi-univalent functions defined with subordination in the open unit disc $E=\left\rbrace z:\mid z \mid <1\right\lbrace $. The bounds for the initial coefficients for the functions in these classes are studied. The earlier known results follow as special cases.
LA - eng
KW - coefficient estimates; analytic functions; univalent functions; bi-univalent functions; generalized Sãlãgean operator; subordination
UR - http://eudml.org/doc/298325
ER -

References

top
  1. Abirami, C., Magesh, N., Gati, N.B., Yamini, J., 10.1007/s41478-020-00224-2, J. Anal. 2020 (2020), 1–10, https://doi.org/10.1007/s41478-020-00224-2. (2020) MR4181908DOI10.1007/s41478-020-00224-2
  2. Al-Oboudi, F.M., 10.1155/S0161171204108090, Int. J. Math. Math. Sci. 27 (2004), 1429–1436. (2004) MR2085011DOI10.1155/S0161171204108090
  3. Aouf, M.K., 10.1155/S0161171287000838, Int. J. Math. Math. Sci. 10 (4) (1987), 733–744. (1987) MR0907789DOI10.1155/S0161171287000838
  4. Brannan, D.A., Taha, T.S., On some classes of bi-univalent functions, Mathematical Analysis and its Applications, Kuwait, February 18–21, 1985 (Mazhar, S.M., Hamoni, A., Faour, N.S., eds.), KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53–60, 1985, See also Studia Univ. Babes-Bolyai Math., 1986, 31(2), 70–77. (1985) MR0951657
  5. Frasin, B.A., Aouf, M.K., 10.1016/j.aml.2011.03.048, Appl. Math. Lett. 24 (2011), 1569–1573. (2011) MR2803711DOI10.1016/j.aml.2011.03.048
  6. Joshi, S., Altinkya, S., Yalcin, S., Coefficient estimates for Sãlãgean type λ -bi-pseudo-starlike functions, Kyungpook Math. J. 57 (2017), 613–621. (2017) MR3745142
  7. Joshi, S., Pawar, H., 10.1016/j.joems.2016.03.007, J. Egyptian Math. Soc. 24 (2016), 522–525. (2016) MR3553869DOI10.1016/j.joems.2016.03.007
  8. Juma, A.R S., Aziz, F.S., Applying Ruscheweyh derivative on two subclasses of bi-univalent functions, Int. J. Basic Appl. Sci. 12 (6) (2012), 68–74. (2012) 
  9. Lewin, M., 10.1090/S0002-9939-1967-0206255-1, Proc. Amer. Math. Soc. 18 (1967), 63–68. (1967) MR0206255DOI10.1090/S0002-9939-1967-0206255-1
  10. Magesh, N., Bulut, S., 10.1007/s13370-017-0535-3, Afrika Mat. 29 (2018), 203–209. (2018) MR3761423DOI10.1007/s13370-017-0535-3
  11. Magesh, N., Rosy, T., Varma, S., Coefficient estimate problem for a new subclass of bi-univalent functions, J. Complex Anal. 2013 (2013), 3 pp., Article ID 474231. (2013) MR3124622
  12. Mazi, E.P., Opoola, T.O., On some subclasses of bi-univalent functions associating pseudo-starlike functions with Sakaguchi type functions, Gen. Math. 25 (2017), 85–95. (2017) 
  13. Sãlãgean, G.S., 10.1007/BFb0066543, Complex Analysis-Fifth Romanian Finish Seminar, Bucharest 1 (1983), 362–372. (1983) MR0738107DOI10.1007/BFb0066543
  14. Singh, Gagandeep, Coefficient estimates for bi-univalent functions with respect to symmetric points, J. Nonlinear Func. Anal. 1 (2013), 1–9, Article ID 2013. (2013) 
  15. Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit, Certain subclasses of Sakaguchi-type bi-univalent functions, Ganita 69 (2) (2019), 45–55. (2019) MR4060858
  16. Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit, A generalized subclass of alpha-convex bi-univalent functions of complex order, Jnanabha 50 (1) (2020), 65–71. (2020) MR3962610
  17. Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit, Certain subclasses of univalent and bi-univalent functions related to shell-like curves connected with Fibonacci numbers, Gen. Math. 28 (1) (2020), 1258–140. (2020) MR3962610
  18. Sivapalan, J., Magesh, N., Murthy, S., 10.26637/MJM0802/0042, Malaya J. Mat. 8 (2) (2020), 565–569. (2020) MR4112566DOI10.26637/MJM0802/0042

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.