Complex symmetry of Toeplitz operators on the weighted Bergman spaces

Xiao-He Hu

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 3, page 855-873
  • ISSN: 0011-4642

Abstract

top
We give a concrete description of complex symmetric monomial Toeplitz operators T z p z ¯ q on the weighted Bergman space A 2 ( Ω ) , where Ω denotes the unit ball or the unit polydisk. We provide a necessary condition for T z p z ¯ q to be complex symmetric. When p , q 2 , we prove that T z p z ¯ q is complex symmetric on A 2 ( Ω ) if and only if p 1 = q 2 and p 2 = q 1 . Moreover, we completely characterize when monomial Toeplitz operators T z p z ¯ q on A 2 ( 𝔻 n ) are J U -symmetric with the n × n symmetric unitary matrix U .

How to cite

top

Hu, Xiao-He. "Complex symmetry of Toeplitz operators on the weighted Bergman spaces." Czechoslovak Mathematical Journal 72.3 (2022): 855-873. <http://eudml.org/doc/298381>.

@article{Hu2022,
abstract = {We give a concrete description of complex symmetric monomial Toeplitz operators $T_\{z^p \bar\{z\}^q\}$ on the weighted Bergman space $A^2(\Omega )$, where $\Omega $ denotes the unit ball or the unit polydisk. We provide a necessary condition for $T_\{z^p \bar\{z\}^q\}$ to be complex symmetric. When $p,q \in \mathbb \{N\}^2$, we prove that $T_\{z^p \bar\{z\}^q\}$ is complex symmetric on $A^2(\Omega )$ if and only if $p_1 = q_2$ and $p_2 = q_1$. Moreover, we completely characterize when monomial Toeplitz operators $T_\{z^p \bar\{z\}^q\}$ on $A^2(\mathbb \{D\}_\{n\})$ are $J_U$-symmetric with the $ n \times n$ symmetric unitary matrix $U$.},
author = {Hu, Xiao-He},
journal = {Czechoslovak Mathematical Journal},
keywords = {complex symmetry; Toeplitz operator; weighted Bergman space},
language = {eng},
number = {3},
pages = {855-873},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complex symmetry of Toeplitz operators on the weighted Bergman spaces},
url = {http://eudml.org/doc/298381},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Hu, Xiao-He
TI - Complex symmetry of Toeplitz operators on the weighted Bergman spaces
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 855
EP - 873
AB - We give a concrete description of complex symmetric monomial Toeplitz operators $T_{z^p \bar{z}^q}$ on the weighted Bergman space $A^2(\Omega )$, where $\Omega $ denotes the unit ball or the unit polydisk. We provide a necessary condition for $T_{z^p \bar{z}^q}$ to be complex symmetric. When $p,q \in \mathbb {N}^2$, we prove that $T_{z^p \bar{z}^q}$ is complex symmetric on $A^2(\Omega )$ if and only if $p_1 = q_2$ and $p_2 = q_1$. Moreover, we completely characterize when monomial Toeplitz operators $T_{z^p \bar{z}^q}$ on $A^2(\mathbb {D}_{n})$ are $J_U$-symmetric with the $ n \times n$ symmetric unitary matrix $U$.
LA - eng
KW - complex symmetry; Toeplitz operator; weighted Bergman space
UR - http://eudml.org/doc/298381
ER -

References

top
  1. Bu, Q., Chen, Y., Zhu, S., 10.1007/s00020-021-02629-5, Integral Equations Oper. Theory 93 (2021), Article ID 15, 19 pages. (2021) Zbl07345264MR4233225DOI10.1007/s00020-021-02629-5
  2. Dong, X.-T., Zhu, K., 10.1007/s00020-016-2326-x, Integral Equations Oper. Theory 86 (2016), 271-300. (2016) Zbl1448.47038MR3568017DOI10.1007/s00020-016-2326-x
  3. Garcia, S. R., Poore, D. E., 10.1090/S0002-9939-2012-11347-4, Proc. Am. Math. Soc. 141 (2013), 549. (2013) Zbl1264.47003MR2996959DOI10.1090/S0002-9939-2012-11347-4
  4. Garcia, S. R., Putinar, M., 10.1090/S0002-9947-05-03742-6, Trans. Am. Math. Soc. 358 (2006), 1285-1315. (2006) Zbl1087.30031MR2187654DOI10.1090/S0002-9947-05-03742-6
  5. Garcia, S. R., Putinar, M., 10.1090/S0002-9947-07-04213-4, Trans. Am. Math. Soc. 359 (2007), 3913-3931. (2007) Zbl1123.47030MR2302518DOI10.1090/S0002-9947-07-04213-4
  6. Garcia, S. R., Wogen, W. R., 10.1016/j.jfa.2009.04.005, J. Funct. Anal. 257 (2009), 1251-1260. (2009) Zbl1166.47023MR2535469DOI10.1016/j.jfa.2009.04.005
  7. Garcia, S. R., Wogen, W. R., 10.1090/S0002-9947-2010-05068-8, Trans. Am. Math. Soc. 362 (2010), 6065-6077. (2010) Zbl1208.47036MR2661508DOI10.1090/S0002-9947-2010-05068-8
  8. Guo, K., Ji, Y., Zhu, S., 10.1090/S0002-9947-2015-06215-1, Trans. Am. Math. Soc. 367 (2015), 6903-6942. (2015) Zbl1393.47018MR3378818DOI10.1090/S0002-9947-2015-06215-1
  9. Guo, K., Zhu, S., 10.7900/jot.2013aug15.2007, J. Oper. Theory 72 (2014), 529-547. (2014) Zbl1389.47042MR3272045DOI10.7900/jot.2013aug15.2007
  10. Jiang, C., Dong, X., Zhou, Z., 10.1007/s10473-020-0103-2, Acta Math. Sci., Ser. B, Engl. Ed. 40 (2020), 35-44. (2020) MR4070746DOI10.1007/s10473-020-0103-2
  11. Jiang, C., Zhou, Z.-H., Dong, X.-T., 10.1007/s11785-017-0730-0, Complex Anal. Oper. Theory 13 (2019), 2095-2121. (2019) Zbl07081947MR3979700DOI10.1007/s11785-017-0730-0
  12. Ko, E., Lee, J. E., 10.1016/j.jmaa.2015.09.004, J. Math. Anal. Appl. 434 (2016), 20-34. (2016) Zbl1347.47019MR3404546DOI10.1016/j.jmaa.2015.09.004
  13. Li, A., Liu, Y., Chen, Y., 10.1016/j.jmaa.2020.123998, J. Math. Anal. Appl. 487 (2020), Article ID 123998, 12 pages. (2020) Zbl1435.47041MR4074195DOI10.1016/j.jmaa.2020.123998
  14. Li, R., Yang, Y., Lu, Y., 10.1016/j.jmaa.2020.124173, J. Math. Anal. Appl. 489 (2020), Article ID 124173, 11 pages. (2020) Zbl07205245MR4093056DOI10.1016/j.jmaa.2020.124173
  15. Noor, S. W., 10.1007/s00013-017-1101-9, Arch. Math. 109 (2017), 455-460. (2017) Zbl06798496MR3710765DOI10.1007/s00013-017-1101-9
  16. Zhu, S., Li, C. G., 10.1090/S0002-9947-2012-05642-X, Trans. Am. Math. Soc. 365 (2013), 511-530. (2013) Zbl1282.47045MR2984066DOI10.1090/S0002-9947-2012-05642-X
  17. Zhu, S., Li, C. G., Ji, Y. Q., 10.1090/S0002-9939-2011-11345-5, Proc. Am. Math. Soc. 140 (2012), 1705-1708. (2012) Zbl1251.47004MR2869154DOI10.1090/S0002-9939-2011-11345-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.