On a family of elliptic curves of rank at least 2
Kalyan Chakraborty; Richa Sharma
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 3, page 681-693
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChakraborty, Kalyan, and Sharma, Richa. "On a family of elliptic curves of rank at least 2." Czechoslovak Mathematical Journal 72.3 (2022): 681-693. <http://eudml.org/doc/298384>.
@article{Chakraborty2022,
abstract = {Let $C_\{m\} \colon y^\{2\} = x^\{3\} - m^\{2\}x +p^\{2\}q^\{2\}$ be a family of elliptic curves over $\mathbb \{Q\}$, where $m$ is a positive integer and $p$, $q$ are distinct odd primes. We study the torsion part and the rank of $C_m(\mathbb \{Q\})$. More specifically, we prove that the torsion subgroup of $C_\{m\}(\mathbb \{Q\})$ is trivial and the $\mathbb \{Q\}$-rank of this family is at least 2, whenever $m \lnot \equiv 0 \hspace\{4.44443pt\}(\@mod \; 3)$, $m \lnot \equiv 0 \hspace\{4.44443pt\}(\@mod \; 4)$ and $m \equiv 2 \hspace\{4.44443pt\}(\@mod \; 64)$ with neither $p$ nor $q$ dividing $m$.},
author = {Chakraborty, Kalyan, Sharma, Richa},
journal = {Czechoslovak Mathematical Journal},
keywords = {elliptic curve; torsion subgroup; rank},
language = {eng},
number = {3},
pages = {681-693},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a family of elliptic curves of rank at least 2},
url = {http://eudml.org/doc/298384},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Chakraborty, Kalyan
AU - Sharma, Richa
TI - On a family of elliptic curves of rank at least 2
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 681
EP - 693
AB - Let $C_{m} \colon y^{2} = x^{3} - m^{2}x +p^{2}q^{2}$ be a family of elliptic curves over $\mathbb {Q}$, where $m$ is a positive integer and $p$, $q$ are distinct odd primes. We study the torsion part and the rank of $C_m(\mathbb {Q})$. More specifically, we prove that the torsion subgroup of $C_{m}(\mathbb {Q})$ is trivial and the $\mathbb {Q}$-rank of this family is at least 2, whenever $m \lnot \equiv 0 \hspace{4.44443pt}(\@mod \; 3)$, $m \lnot \equiv 0 \hspace{4.44443pt}(\@mod \; 4)$ and $m \equiv 2 \hspace{4.44443pt}(\@mod \; 64)$ with neither $p$ nor $q$ dividing $m$.
LA - eng
KW - elliptic curve; torsion subgroup; rank
UR - http://eudml.org/doc/298384
ER -
References
top- Antoniewicz, A., On a family of elliptic curves, Zesz. Nauk. Uniw. Jagiell. 1285, Univ. Iagell. Acta Math. 43 (2005), 21-32. (2005) Zbl1116.11036MR2331469
- Brown, E., Myers, B. T., 10.2307/3072428, Am. Math. Mon. 109 (2002), 639-649. (2002) Zbl1083.11037MR1917222DOI10.2307/3072428
- Cremona, J. E., Algorithms for Modular Elliptic Curves, Cambridge University Press, New York (1997). (1997) Zbl0872.14041MR1628193
- Husemöller, D., 10.1007/b97292, Graduate Texts in Mathematics 111. Springer, New York (2004). (2004) Zbl1040.11043MR2024529DOI10.1007/b97292
- Juyal, A., Kumar, S. D., 10.1007/s12044-018-0433-0, Proc. Indian Acad. Sci., Math. Sci. 128 (2018), Article ID 54, 11 pages. (2018) Zbl1448.11104MR3869527DOI10.1007/s12044-018-0433-0
- Mazur, B., 10.1007/BF02684339, Publ. Math., Inst. Hautes Étud. Sci. 47 (1977), 33-186. (1977) Zbl0394.14008MR0488287DOI10.1007/BF02684339
- Silverman, J. H., Tate, J. T., 10.1007/978-3-319-18588-0, Undergraduate Texts in Mathematics. Springer, Cham (2015). (2015) Zbl1346.11001MR3363545DOI10.1007/978-3-319-18588-0
- Stein, W., Joyner, D., Kohel, D., Cremona, J., Burçin, E., SageMath software, version 4.5.3, Available at https://www.sagemath.org/ (2010). (2010)
- Tadić, P., 10.3336/gm.47.1.06, Glas. Mat., III. Ser. 47 (2012), 81-93. (2012) Zbl1254.11057MR2942776DOI10.3336/gm.47.1.06
- Tadić, P., The rank of certain subfamilies of the elliptic curve , Ann. Math. Inform. 40 (2012), 145-153. (2012) Zbl1274.11109MR3005123
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.