Remarks on Sekine quantum groups

Jialei Chen; Shilin Yang

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 3, page 695-707
  • ISSN: 0011-4642

Abstract

top
We first describe the Sekine quantum groups 𝒜 k (the finite-dimensional Kac algebra of Kac-Paljutkin type) by generators and relations explicitly, which maybe convenient for further study. Then we classify all irreducible representations of 𝒜 k and describe their representation rings r ( 𝒜 k ) . Finally, we compute the the Frobenius-Perron dimension of the Casimir element and the Casimir number of r ( 𝒜 k ) .

How to cite

top

Chen, Jialei, and Yang, Shilin. "Remarks on Sekine quantum groups." Czechoslovak Mathematical Journal 72.3 (2022): 695-707. <http://eudml.org/doc/298387>.

@article{Chen2022,
abstract = {We first describe the Sekine quantum groups $\mathcal \{A\}_\{k\}$ (the finite-dimensional Kac algebra of Kac-Paljutkin type) by generators and relations explicitly, which maybe convenient for further study. Then we classify all irreducible representations of $\mathcal \{A\}_\{k\}$ and describe their representation rings $r(\mathcal \{A\}_\{k\})$. Finally, we compute the the Frobenius-Perron dimension of the Casimir element and the Casimir number of $r(\mathcal \{A\}_\{k\})$.},
author = {Chen, Jialei, Yang, Shilin},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sekine quantum group; representation ring; Casimir number},
language = {eng},
number = {3},
pages = {695-707},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remarks on Sekine quantum groups},
url = {http://eudml.org/doc/298387},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Chen, Jialei
AU - Yang, Shilin
TI - Remarks on Sekine quantum groups
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 695
EP - 707
AB - We first describe the Sekine quantum groups $\mathcal {A}_{k}$ (the finite-dimensional Kac algebra of Kac-Paljutkin type) by generators and relations explicitly, which maybe convenient for further study. Then we classify all irreducible representations of $\mathcal {A}_{k}$ and describe their representation rings $r(\mathcal {A}_{k})$. Finally, we compute the the Frobenius-Perron dimension of the Casimir element and the Casimir number of $r(\mathcal {A}_{k})$.
LA - eng
KW - Sekine quantum group; representation ring; Casimir number
UR - http://eudml.org/doc/298387
ER -

References

top
  1. Etingof, P., Ostrik, V., 10.17323/1609-4514-2004-4-3-627-654, Mosc. Math. J. 4 (2004), 627-654. (2004) Zbl1077.18005MR2119143DOI10.17323/1609-4514-2004-4-3-627-654
  2. Franz, U., Skalski, A., 10.1016/j.jalgebra.2009.05.037, J. Algebra 322 (2009), 1774-1802. (2009) Zbl1176.43005MR2543634DOI10.1016/j.jalgebra.2009.05.037
  3. Kac, G. I., Paljutkin, V. G., Finite ring groups, Trans. Mosc. Math. Soc. 15 (1966), 251-294. (1966) Zbl0218.43005MR0208401
  4. Lorenz, M., 10.1090/conm/537, Groups, Algebras and Applications Contemporary Mathematics 537. AMS, Providence (2011), 269-289. (2011) Zbl1254.16014MR2799106DOI10.1090/conm/537
  5. Sekine, Y., 10.1090/S0002-9939-96-03199-1, Proc. Am. Math. Soc. 124 (1996), 1139-1147. (1996) Zbl0845.46031MR1307564DOI10.1090/S0002-9939-96-03199-1
  6. Vaes, S., Vainerman, L., 10.1016/S0001-8708(02)00040-3, Adv. Math. 175 (2003), 1-101. (2003) Zbl1034.46068MR1970242DOI10.1016/S0001-8708(02)00040-3
  7. Wang, Z., Li, L., Zhang, Y., 10.1017/S0017089517000246, Glasg. Math. J. 60 (2018), 253-272. (2018) Zbl1444.16025MR3733845DOI10.1017/S0017089517000246
  8. Zhang, H., 10.1080/00927872.2019.1579335, Commun. Algebra 47 (2019), 4095-4113. (2019) Zbl07089356MR3975989DOI10.1080/00927872.2019.1579335

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.