(Generalized) filter properties of the amalgamated algebra

Yusof Azimi

Archivum Mathematicum (2022)

  • Volume: 058, Issue: 3, page 133-140
  • ISSN: 0044-8753

Abstract

top
Let R and S be commutative rings with unity, f : R S a ring homomorphism and J an ideal of S . Then the subring R f J : = { ( a , f ( a ) + j ) a R and j J } of R × S is called the amalgamation of R with S along J with respect to f . In this paper, we determine when R f J is a (generalized) filter ring.

How to cite

top

Azimi, Yusof. "(Generalized) filter properties of the amalgamated algebra." Archivum Mathematicum 058.3 (2022): 133-140. <http://eudml.org/doc/298398>.

@article{Azimi2022,
abstract = {Let $R$ and $S$ be commutative rings with unity, $f\colon R\rightarrow S$ a ring homomorphism and $J$ an ideal of $S$. Then the subring $R\bowtie ^fJ:=\lbrace (a,f(a)+j)\mid a\in R$ and $j\in J\rbrace $ of $R\times S$ is called the amalgamation of $R$ with $S$ along $J$ with respect to $f$. In this paper, we determine when $R\bowtie ^fJ$ is a (generalized) filter ring.},
author = {Azimi, Yusof},
journal = {Archivum Mathematicum},
keywords = {amalgamated algebra; Cohen-Macaulay ring; $f$-ring; generalized $f$-ring},
language = {eng},
number = {3},
pages = {133-140},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {(Generalized) filter properties of the amalgamated algebra},
url = {http://eudml.org/doc/298398},
volume = {058},
year = {2022},
}

TY - JOUR
AU - Azimi, Yusof
TI - (Generalized) filter properties of the amalgamated algebra
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 3
SP - 133
EP - 140
AB - Let $R$ and $S$ be commutative rings with unity, $f\colon R\rightarrow S$ a ring homomorphism and $J$ an ideal of $S$. Then the subring $R\bowtie ^fJ:=\lbrace (a,f(a)+j)\mid a\in R$ and $j\in J\rbrace $ of $R\times S$ is called the amalgamation of $R$ with $S$ along $J$ with respect to $f$. In this paper, we determine when $R\bowtie ^fJ$ is a (generalized) filter ring.
LA - eng
KW - amalgamated algebra; Cohen-Macaulay ring; $f$-ring; generalized $f$-ring
UR - http://eudml.org/doc/298398
ER -

References

top
  1. Anderson, D.D., Winders, M., 10.1216/JCA-2009-1-1-3, J. Commut. Algebra 1 (2009), 3–56. (2009) MR2462381DOI10.1216/JCA-2009-1-1-3
  2. Azimi, Y., 10.1080/00927872.2021.1905823, Comm. Algebra 49 (2021), 3743–3747. (2021) MR4290107DOI10.1080/00927872.2021.1905823
  3. Azimi, Y., 10.1016/j.jalgebra.2021.12.015, J. Algebra 597 (2022), 266–274. (2022) MR4406398DOI10.1016/j.jalgebra.2021.12.015
  4. Azimi, Y., Sahandi, P., Shirmihammadi, N., 10.1216/JCA-2018-10-4-457, J. Commut. Algebra 10 (4) (2018), 457–474. (2018) MR3892143DOI10.1216/JCA-2018-10-4-457
  5. Azimi, Y., Sahandi, P., Shirmihammadi, N., 10.1007/s10468-018-09847-3, Algebr. Represent. Theory 23 (2019), 275–280. (2019) MR4097315DOI10.1007/s10468-018-09847-3
  6. Azimi, Y., Sahandi, P., Shirmohammadi, N., 10.1080/00927872.2018.1534120, Comm. Algebra 47 (2019), 2251–2261. (2019) MR3977735DOI10.1080/00927872.2018.1534120
  7. Brodmann, M.P., Sharp, R.Y., Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Stud. Adv. Math., vol. 136, Cambridge University Press, 2013. (2013) MR3014449
  8. Bruns, W., Herzog, J., Cohen-Macaulay rings, Cambridge Stud. Adv. Math., vol. 39, Cambridge University Press, 1998, Rev. ed. (1998) MR1251956
  9. Cuong, N.T., Schenzel, P., Trung, N.V., Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57–73. (1978) MR0517641
  10. D’Anna, M., Finocchiaro, C.A., Fontana, M., Amalgamated algebras along an ideal, Commutative Algebra and Applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco,, 2008, W. de Gruyter Publisher, Berlin, 2009, pp. 155–172. (2009) MR2606283
  11. D’Anna, M., Finocchiaro, C.A., Fontana, M., 10.1016/j.jpaa.2009.12.008, J. Pure Appl. Algebra 214 (2010), 1633–1641. (2010) MR2593689DOI10.1016/j.jpaa.2009.12.008
  12. D’Anna, M., Finocchiaro, C.A., Fontana, M., 10.1080/00927872.2015.1033628, Comm. Algebra 44 (2016), 1836–1851. (2016) MR3490651DOI10.1080/00927872.2015.1033628
  13. D’Anna, M., Fontana, M., 10.1142/S0219498807002326, J. Algebra Appl. 6 (3) (2007), 443–459. (2007) MR2337762DOI10.1142/S0219498807002326
  14. Lü, R., Tang, Z., 10.1090/S0002-9939-01-06269-4, Proc. Amer. Math. Soc. 130 (7) (2002), 1905–1912. (2002) MR1896021DOI10.1090/S0002-9939-01-06269-4
  15. Melkersson, L., 10.1016/0022-4049(94)00059-R, J. Pure Appl. Algebra 101 (1995), 291–303. (1995) MR1348571DOI10.1016/0022-4049(94)00059-R
  16. Nagata, M., Local Rings, Interscience, New York, 1962. (1962) MR0155856
  17. Nhan, L.T., 10.1081/AGB-200051137, Comm. Algebra 33 (2005), 793–806. (2005) MR2128412DOI10.1081/AGB-200051137
  18. Nhan, L.T., Marcel, M., 10.1080/00927870500441676, Comm. Algebra 34 (2006), 863–878. (2006) MR2208103DOI10.1080/00927870500441676
  19. Sahandi, P., Shirmohammadi, N., Notes on amalgamated duplication of a ring along an ideal, Bull. Iranian Math. Soc. 41 (2015), 749–757. (2015) MR3359900
  20. Sahandi, P., Shirmohammadi, N., Sohrabi, S., 10.1080/00927872.2014.999928, Comm. Algebra 44 (2016), 1096–1109. (2016) MR3463131DOI10.1080/00927872.2014.999928
  21. Stückrad, J., Vogel, W., Buchsbaum Rings and Applications, Berlin: WEB Deutscher Verlag der Wissenschaften, 1986. (1986) MR0873945

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.