(Generalized) filter properties of the amalgamated algebra
Archivum Mathematicum (2022)
- Volume: 058, Issue: 3, page 133-140
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAzimi, Yusof. "(Generalized) filter properties of the amalgamated algebra." Archivum Mathematicum 058.3 (2022): 133-140. <http://eudml.org/doc/298398>.
@article{Azimi2022,
abstract = {Let $R$ and $S$ be commutative rings with unity, $f\colon R\rightarrow S$ a ring homomorphism and $J$ an ideal of $S$. Then the subring $R\bowtie ^fJ:=\lbrace (a,f(a)+j)\mid a\in R$ and $j\in J\rbrace $ of $R\times S$ is called the amalgamation of $R$ with $S$ along $J$ with respect to $f$. In this paper, we determine when $R\bowtie ^fJ$ is a (generalized) filter ring.},
author = {Azimi, Yusof},
journal = {Archivum Mathematicum},
keywords = {amalgamated algebra; Cohen-Macaulay ring; $f$-ring; generalized $f$-ring},
language = {eng},
number = {3},
pages = {133-140},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {(Generalized) filter properties of the amalgamated algebra},
url = {http://eudml.org/doc/298398},
volume = {058},
year = {2022},
}
TY - JOUR
AU - Azimi, Yusof
TI - (Generalized) filter properties of the amalgamated algebra
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 3
SP - 133
EP - 140
AB - Let $R$ and $S$ be commutative rings with unity, $f\colon R\rightarrow S$ a ring homomorphism and $J$ an ideal of $S$. Then the subring $R\bowtie ^fJ:=\lbrace (a,f(a)+j)\mid a\in R$ and $j\in J\rbrace $ of $R\times S$ is called the amalgamation of $R$ with $S$ along $J$ with respect to $f$. In this paper, we determine when $R\bowtie ^fJ$ is a (generalized) filter ring.
LA - eng
KW - amalgamated algebra; Cohen-Macaulay ring; $f$-ring; generalized $f$-ring
UR - http://eudml.org/doc/298398
ER -
References
top- Anderson, D.D., Winders, M., 10.1216/JCA-2009-1-1-3, J. Commut. Algebra 1 (2009), 3–56. (2009) MR2462381DOI10.1216/JCA-2009-1-1-3
- Azimi, Y., 10.1080/00927872.2021.1905823, Comm. Algebra 49 (2021), 3743–3747. (2021) MR4290107DOI10.1080/00927872.2021.1905823
- Azimi, Y., 10.1016/j.jalgebra.2021.12.015, J. Algebra 597 (2022), 266–274. (2022) MR4406398DOI10.1016/j.jalgebra.2021.12.015
- Azimi, Y., Sahandi, P., Shirmihammadi, N., 10.1216/JCA-2018-10-4-457, J. Commut. Algebra 10 (4) (2018), 457–474. (2018) MR3892143DOI10.1216/JCA-2018-10-4-457
- Azimi, Y., Sahandi, P., Shirmihammadi, N., 10.1007/s10468-018-09847-3, Algebr. Represent. Theory 23 (2019), 275–280. (2019) MR4097315DOI10.1007/s10468-018-09847-3
- Azimi, Y., Sahandi, P., Shirmohammadi, N., 10.1080/00927872.2018.1534120, Comm. Algebra 47 (2019), 2251–2261. (2019) MR3977735DOI10.1080/00927872.2018.1534120
- Brodmann, M.P., Sharp, R.Y., Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Stud. Adv. Math., vol. 136, Cambridge University Press, 2013. (2013) MR3014449
- Bruns, W., Herzog, J., Cohen-Macaulay rings, Cambridge Stud. Adv. Math., vol. 39, Cambridge University Press, 1998, Rev. ed. (1998) MR1251956
- Cuong, N.T., Schenzel, P., Trung, N.V., Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr. 85 (1978), 57–73. (1978) MR0517641
- D’Anna, M., Finocchiaro, C.A., Fontana, M., Amalgamated algebras along an ideal, Commutative Algebra and Applications, Proceedings of the Fifth International Fez Conference on Commutative Algebra and Applications, Fez, Morocco,, 2008, W. de Gruyter Publisher, Berlin, 2009, pp. 155–172. (2009) MR2606283
- D’Anna, M., Finocchiaro, C.A., Fontana, M., 10.1016/j.jpaa.2009.12.008, J. Pure Appl. Algebra 214 (2010), 1633–1641. (2010) MR2593689DOI10.1016/j.jpaa.2009.12.008
- D’Anna, M., Finocchiaro, C.A., Fontana, M., 10.1080/00927872.2015.1033628, Comm. Algebra 44 (2016), 1836–1851. (2016) MR3490651DOI10.1080/00927872.2015.1033628
- D’Anna, M., Fontana, M., 10.1142/S0219498807002326, J. Algebra Appl. 6 (3) (2007), 443–459. (2007) MR2337762DOI10.1142/S0219498807002326
- Lü, R., Tang, Z., 10.1090/S0002-9939-01-06269-4, Proc. Amer. Math. Soc. 130 (7) (2002), 1905–1912. (2002) MR1896021DOI10.1090/S0002-9939-01-06269-4
- Melkersson, L., 10.1016/0022-4049(94)00059-R, J. Pure Appl. Algebra 101 (1995), 291–303. (1995) MR1348571DOI10.1016/0022-4049(94)00059-R
- Nagata, M., Local Rings, Interscience, New York, 1962. (1962) MR0155856
- Nhan, L.T., 10.1081/AGB-200051137, Comm. Algebra 33 (2005), 793–806. (2005) MR2128412DOI10.1081/AGB-200051137
- Nhan, L.T., Marcel, M., 10.1080/00927870500441676, Comm. Algebra 34 (2006), 863–878. (2006) MR2208103DOI10.1080/00927870500441676
- Sahandi, P., Shirmohammadi, N., Notes on amalgamated duplication of a ring along an ideal, Bull. Iranian Math. Soc. 41 (2015), 749–757. (2015) MR3359900
- Sahandi, P., Shirmohammadi, N., Sohrabi, S., 10.1080/00927872.2014.999928, Comm. Algebra 44 (2016), 1096–1109. (2016) MR3463131DOI10.1080/00927872.2014.999928
- Stückrad, J., Vogel, W., Buchsbaum Rings and Applications, Berlin: WEB Deutscher Verlag der Wissenschaften, 1986. (1986) MR0873945
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.