A lower bound sequence for the minimum eigenvalue of Hadamard product of an M -matrix and its inverse

Wenlong Zeng; Jianzhou Liu

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 3, page 663-679
  • ISSN: 0011-4642

Abstract

top
We propose a lower bound sequence for the minimum eigenvalue of Hadamard product of an M -matrix and its inverse, in terms of an S -type eigenvalues inclusion set and inequality scaling techniques. In addition, it is proved that the lower bound sequence converges. Several numerical experiments are given to demonstrate that the lower bound sequence is sharper than some existing ones in most cases.

How to cite

top

Zeng, Wenlong, and Liu, Jianzhou. "A lower bound sequence for the minimum eigenvalue of Hadamard product of an $M$-matrix and its inverse." Czechoslovak Mathematical Journal 72.3 (2022): 663-679. <http://eudml.org/doc/298417>.

@article{Zeng2022,
abstract = {We propose a lower bound sequence for the minimum eigenvalue of Hadamard product of an $M$-matrix and its inverse, in terms of an $S$-type eigenvalues inclusion set and inequality scaling techniques. In addition, it is proved that the lower bound sequence converges. Several numerical experiments are given to demonstrate that the lower bound sequence is sharper than some existing ones in most cases.},
author = {Zeng, Wenlong, Liu, Jianzhou},
journal = {Czechoslovak Mathematical Journal},
keywords = {lower bound sequence; Hadamard product; $M$-matrix; doubly stochastic matrix; $S$-type eigenvalue inclusion set},
language = {eng},
number = {3},
pages = {663-679},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A lower bound sequence for the minimum eigenvalue of Hadamard product of an $M$-matrix and its inverse},
url = {http://eudml.org/doc/298417},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Zeng, Wenlong
AU - Liu, Jianzhou
TI - A lower bound sequence for the minimum eigenvalue of Hadamard product of an $M$-matrix and its inverse
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 3
SP - 663
EP - 679
AB - We propose a lower bound sequence for the minimum eigenvalue of Hadamard product of an $M$-matrix and its inverse, in terms of an $S$-type eigenvalues inclusion set and inequality scaling techniques. In addition, it is proved that the lower bound sequence converges. Several numerical experiments are given to demonstrate that the lower bound sequence is sharper than some existing ones in most cases.
LA - eng
KW - lower bound sequence; Hadamard product; $M$-matrix; doubly stochastic matrix; $S$-type eigenvalue inclusion set
UR - http://eudml.org/doc/298417
ER -

References

top
  1. Berman, A., Plemmons, R. J., 10.1137/1.9781611971262, Classics in Applied Mathematics 9. SIAM, Philadelphia (1994). (1994) Zbl0815.15016MR1298430DOI10.1137/1.9781611971262
  2. Chen, F.-B., 10.1186/s13660-015-0555-1, J. Inequal. Appl. 2015 (2015), Article ID 35, 12 pages. (2015) Zbl1307.15005MR3304942DOI10.1186/s13660-015-0555-1
  3. Cheng, G., Tan, Q., Wang, Z., 10.1186/1029-242X-2013-65, J. Inequal. Appl. 2013 (2013), Article ID 65, 9 pages. (2013) Zbl1282.15010MR3031582DOI10.1186/1029-242X-2013-65
  4. Fiedler, M., Johnson, C. R., Markham, T. L., Neumann, M., 10.1016/0024-3795(85)90237-X, Linear Algebra Appl. 71 (1985), 81-94. (1985) Zbl0597.15016MR0813035DOI10.1016/0024-3795(85)90237-X
  5. Fiedler, M., Markham, T. L., 10.1016/0024-3795(88)90139-5, Linear Algebra Appl. 101 (1988), 1-8. (1988) Zbl0648.15009MR0941292DOI10.1016/0024-3795(88)90139-5
  6. Fiedler, M., Pták, V., 10.21136/CMJ.1967.100787, Czech. Math. J. 17 (1967), 420-433. (1967) Zbl0178.03402MR0215869DOI10.21136/CMJ.1967.100787
  7. Huang, Z., Wang, L., Xu, Z., 10.7153/mia-20-44, Math. Inequal. Appl. 20 (2017), 661-682. (2017) Zbl1377.15010MR3653913DOI10.7153/mia-20-44
  8. Li, H.-B., Huang, T.-Z., Shen, S.-Q., Li, H., 10.1016/j.laa.2006.07.008, Linear Algebra Appl. 420 (2007), 235-247. (2007) Zbl1172.15008MR2277644DOI10.1016/j.laa.2006.07.008
  9. Sinkhorn, R., Knopp, P., 10.2140/pjm.1967.21.343, Pac. J. Math. 21 (1967), 343-348. (1967) Zbl0152.01403MR0210731DOI10.2140/pjm.1967.21.343
  10. Varga, R. S., 10.1007/978-3-642-17798-9, Springer Series in Computational Mathematics 36. Springer, Berlin (2004). (2004) Zbl1057.15023MR2093409DOI10.1007/978-3-642-17798-9
  11. Zhao, J., Wang, F., Sang, C., 10.1186/s13660-015-0611-x, J. Inequal. Appl. 2015 (2015), Article ID 92, 9 pages. (2015) Zbl1308.15003MR3318918DOI10.1186/s13660-015-0611-x
  12. Zhou, D., Chen, G., Wu, G., Zhang, X., 10.1186/1029-242X-2013-16, J. Inequal. Appl. 2013 (2013), Article ID 16, 10 pages. (2013) Zbl1281.15017MR3017347DOI10.1186/1029-242X-2013-16

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.