Bartz-Marlewski equation with generalized Lucas components
Archivum Mathematicum (2022)
- Volume: 058, Issue: 3, page 189-197
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topHashim, Hayder R.. "Bartz-Marlewski equation with generalized Lucas components." Archivum Mathematicum 058.3 (2022): 189-197. <http://eudml.org/doc/298461>.
@article{Hashim2022,
abstract = {Let $\lbrace U_n\rbrace =\lbrace U_n(P,Q)\rbrace $ and $\lbrace V_n\rbrace =\lbrace V_n(P,Q)\rbrace $ be the Lucas sequences of the first and second kind respectively at the parameters $P \ge 1$ and $Q \in \lbrace -1, 1\rbrace $. In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation \[ x^2-3xy+y^2+x=0\,, \]
where $(x,y)=(U_i, U_j)$ or $(V_i, V_j)$ with $i$, $ j \ge 1$. Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters.},
author = {Hashim, Hayder R.},
journal = {Archivum Mathematicum},
keywords = {Lucas sequences; Diophantine equation},
language = {eng},
number = {3},
pages = {189-197},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Bartz-Marlewski equation with generalized Lucas components},
url = {http://eudml.org/doc/298461},
volume = {058},
year = {2022},
}
TY - JOUR
AU - Hashim, Hayder R.
TI - Bartz-Marlewski equation with generalized Lucas components
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 3
SP - 189
EP - 197
AB - Let $\lbrace U_n\rbrace =\lbrace U_n(P,Q)\rbrace $ and $\lbrace V_n\rbrace =\lbrace V_n(P,Q)\rbrace $ be the Lucas sequences of the first and second kind respectively at the parameters $P \ge 1$ and $Q \in \lbrace -1, 1\rbrace $. In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation \[ x^2-3xy+y^2+x=0\,, \]
where $(x,y)=(U_i, U_j)$ or $(V_i, V_j)$ with $i$, $ j \ge 1$. Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters.
LA - eng
KW - Lucas sequences; Diophantine equation
UR - http://eudml.org/doc/298461
ER -
References
top- Bartz, E., Marlewski, A., A computer search of solutions of a certain Diophantine equation, Pro Dialog (in Polish, English summary) 10 (2000), 47–57. (2000)
- Hashim, H.R., Tengely, Sz., 10.1515/ms-2017-0414, Math. Slovaca 70 (2020), no. 5, 1069–1078. DOI: http://dx.doi.org/https://doi.org/10.1515/ms-2017-0414 10.1515/ms-2017-0414 10.1515/ms-2017-0414 10.1515/ms-2017-0414 (2020) DOI10.1515/ms-2017-0414
- Hashim, H.R., Tengely, Sz., Szalay, L., Markoff-Rosenberger triples and generalized Lucas sequences, Period. Math. Hung. (2021). (2021) MR4469427
- Kafle, B., Srinivasan, A., Togbé, A., Markoff equation with Pell component, Fibonacci Quart. 58 (2020), no. 3, 226–230. (2020) MR4135896
- Koshy, T., Polynomial extensions of two Gibonacci delights and their graph-theoretic confirmations, Math. Sci. 43 (2018), no. 2, 96–108 (English). (2018) MR3888119
- Luca, F., Srinivasan, A., Markov equation with Fibonacci components., Fibonacci Q. 56 (2018), no. 2, 126–129 (English). (2018) MR3813331
- Marlewski, A., Zarzycki, P., 10.1016/S0898-1221(04)90010-7, Comput. Math. Appl. 47 (2004), no. 1, 115–121 (English). DOI: http://dx.doi.org/10.1016/S0898-1221(04)90010-7 (2004) MR2062730DOI10.1016/S0898-1221(04)90010-7
- Ribenboim, P., My numbers, my friends. Popular lectures on number theory, New York, NY: Springer, 2000 (English). (2000) MR1761897
- Srinivasan, A., The Markoff-Fibonacci numbers, Fibonacci Q. 58 (2020), no. 5, 222–228 (English). (2020) MR4202995
- Stein, W.thinspaceA., ,, Sage Mathematics Software (Version 9.0), The Sage Development Team, 2020, http://www.sagemath.org. (2020)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.