On stability, boundedness, and square integrability of solutions of certain third order neutral differential equations

John R. Graef; Djamila Beldjerd; Moussadek Remili

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 3, page 285-299
  • ISSN: 0862-7959

Abstract

top
The authors establish some new sufficient conditions under which all solutions of a certain class of nonlinear neutral delay differential equations of the third order are stable, bounded, and square integrable. Illustrative examples are given to demonstrate the main results.

How to cite

top

Graef, John R., Beldjerd, Djamila, and Remili, Moussadek. "On stability, boundedness, and square integrability of solutions of certain third order neutral differential equations." Mathematica Bohemica 147.3 (2022): 285-299. <http://eudml.org/doc/298468>.

@article{Graef2022,
abstract = {The authors establish some new sufficient conditions under which all solutions of a certain class of nonlinear neutral delay differential equations of the third order are stable, bounded, and square integrable. Illustrative examples are given to demonstrate the main results.},
author = {Graef, John R., Beldjerd, Djamila, Remili, Moussadek},
journal = {Mathematica Bohemica},
keywords = {stability; boundedness; square integrability; Lyapunov functional; neutral differential equation of third order},
language = {eng},
number = {3},
pages = {285-299},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On stability, boundedness, and square integrability of solutions of certain third order neutral differential equations},
url = {http://eudml.org/doc/298468},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Graef, John R.
AU - Beldjerd, Djamila
AU - Remili, Moussadek
TI - On stability, boundedness, and square integrability of solutions of certain third order neutral differential equations
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 3
SP - 285
EP - 299
AB - The authors establish some new sufficient conditions under which all solutions of a certain class of nonlinear neutral delay differential equations of the third order are stable, bounded, and square integrable. Illustrative examples are given to demonstrate the main results.
LA - eng
KW - stability; boundedness; square integrability; Lyapunov functional; neutral differential equation of third order
UR - http://eudml.org/doc/298468
ER -

References

top
  1. Ademola, A. T., Arawomo, P. O., Uniform stability and boundedness of solutions of nonlinear delay differential equations of the third order, Math. J. Okayama Univ. 55 (2013), 157-166. (2013) Zbl1277.34098MR3026962
  2. Baculíková, B., Džurina, J., 10.2478/s11533-010-0072-x, Cent. Eur. J. Math. 8 (2010), 1091-1103. (2010) Zbl1221.34173MR2736908DOI10.2478/s11533-010-0072-x
  3. Beldjerd, D., Remili, M., 10.21136/MB.2018.0029-17, Math. Bohem. 143 (2018), 377-389. (2018) Zbl06997372MR3895262DOI10.21136/MB.2018.0029-17
  4. Das, P., Misra, N., 10.1006/jmaa.1996.5143, J. Math. Anal. Appl. 205 (1997), 78-87. (1997) Zbl0874.34058MR1426981DOI10.1006/jmaa.1996.5143
  5. Dorociaková, B., Some nonoscillatory properties of third order differential equations of neutral type, Tatra Mt. Math. Publ. 38 (2007), 71-76. (2007) Zbl1164.34537MR2428913
  6. Došlá, Z., Liška, P., Comparison theorems for third-order neutral differential equations, Electron. J. Differ. Equ. 2016 (2016), Article ID 38, 13 pages. (2016) Zbl1333.34106MR3466509
  7. Došlá, Z., Liška, P., 10.1016/j.aml.2015.12.010, Appl. Math. Lett. 56 (2016), 42-48. (2016) Zbl1335.34102MR3455737DOI10.1016/j.aml.2015.12.010
  8. Ezeilo, J. O. C., 10.1093/qmath/11.1.64, Q. J. Math., Oxf. II. Ser. 11 (1960), 64-69. (1960) Zbl0090.06603MR0117394DOI10.1093/qmath/11.1.64
  9. Goldwyn, R. M., Narendra, K. S., Stability of Certain Nonlinear Differential Equations Using the Second Method of Liapunov, Technical Report No. 403. Harvard University, Cambridge (1963). (1963) 
  10. Graef, J. R., Beldjerd, D., Remili, M., On stability, ultimate boundedness, and existence of periodic solutions of certain third order differential equations with delay, Panam. Math. J. 25 (2015), 82-94. (2015) Zbl1331.34145MR3364326
  11. Graef, J. R., Oudjedi, L. D., Remili, M., 10.2478/tmmp-2018-0008, Tatra Mt. Math. Publ. 71 (2018), 81-97. (2018) Zbl07005891MR3939426DOI10.2478/tmmp-2018-0008
  12. Hale, J. K., 10.1007/978-1-4612-9892-2_3, Applied Mathematical Sciences 3. Springer, New York (1977). (1977) Zbl0352.34001MR0508721DOI10.1007/978-1-4612-9892-2_3
  13. Hale, J. K., Lunel, S. M. Verduyn, 10.1007/978-1-4612-4342-7, Applied Mathematical Sciences 99. Springer, New York (1993). (1993) Zbl0787.34002MR1243878DOI10.1007/978-1-4612-4342-7
  14. Hara, T., 10.3792/pja/1195526260, Proc. Japan Acad. 48 (1972), 549-552. (1972) Zbl0269.34041MR0326088DOI10.3792/pja/1195526260
  15. Hara, T., 10.2977/prims/1195192447, Publ. Res. Inst. Math. Sci., Kyoto Univ. 9 (1974), 649-673. (1974) Zbl0286.34083MR0346256DOI10.2977/prims/1195192447
  16. Kulenović, M. R. S., Ladas, G., Meimaridou, A., 10.1090/S0002-9939-1987-0891141-7, Proc. Am. Math. Soc. 100 (1987), 433-441. (1987) Zbl0645.34061MR0891141DOI10.1090/S0002-9939-1987-0891141-7
  17. Li, T., Zhang, C., Xing, G., 10.1155/2012/569201, Abstr. Appl. Anal. 2012 (2012), Article ID 569201, 11 pages. (2012) Zbl1232.34097MR2872306DOI10.1155/2012/569201
  18. Liapounoff, A. M., 10.1515/9781400882311, Annals of Mathematics Studies 17. Princeton University Press, Princeton (1947), French. (1947) Zbl0031.18403MR0021186DOI10.1515/9781400882311
  19. Mihalíková, B., Kostiková, E., 10.2478/v10127-009-0033-6, Tatra Mt. Math. Publ. 43 (2009), 137-144. (2009) Zbl1212.34193MR2588884DOI10.2478/v10127-009-0033-6
  20. Nakashima, M., Asymptotic behavior of the solutions of some third order differential equations, Rep. Fac. Sci., Kagoshima Univ. 4 (1971), 7-15. (1971) MR0299893
  21. Omeike, M. O., 10.7153/dea-02-04, Differ. Equ. Appl. 2 (2010), 39-51. (2010) Zbl1198.34085MR2654750DOI10.7153/dea-02-04
  22. Omeike, M. O., New results on the stability of solution of some non-autonomous delay differential equations of the third order, Differ. Uravn. Protsessy Upr. 1 (2010), 18-29. (2010) Zbl07038834MR2766411
  23. Qian, C., 10.1016/S0362-546X(99)00120-0, Nonlinear Anal., Theory Methods Appl., Ser. A 42 (2000), 651-661. (2000) Zbl0969.34048MR1776296DOI10.1016/S0362-546X(99)00120-0
  24. Qian, C., 10.1016/S0022-247X(03)00302-0, J. Math. Anal. Appl. 284 (2003), 191-205. (2003) Zbl1054.34078MR1996127DOI10.1016/S0022-247X(03)00302-0
  25. Remili, M., Beldjerd, D., 10.1007/s12215-014-0169-3, Rend. Circ. Mat. Palermo (2) 63 (2014), 447-455. (2014) Zbl1321.34097MR3298595DOI10.1007/s12215-014-0169-3
  26. Remili, M., Beldjerd, D., A boundedness and stability results for a kind of third order delay differential equations, Appl. Appl. Math. 10 (2015), 772-782. (2015) Zbl1331.34135MR3447611
  27. Remili, M., Beldjerd, D., On ultimate boundedness and existence of periodic solutions of kind of third order delay differential equations, Acta Univ. M. Belii, Ser. Math. 24 (2016), 43-57. (2016) Zbl1367.34091MR3492940
  28. Remili, M., Beldjerd, D., 10.1016/j.jaubas.2016.05.002, J. Assoc. Arab Univers. Basic Appl. Sci. 23 (2017), 90-95. (2017) MR3752693DOI10.1016/j.jaubas.2016.05.002
  29. Šimanov, S. N., On stability of solution of a nonlinear equation of the third order, Prikl. Mat. Mekh. 17 (1953), 369-372 Russian. (1953) Zbl0052.31404MR0055523
  30. Swick, K. E., 10.1137/0119008, SIAM J. Appl. Math. 19 (1970), 96-102. (1970) Zbl0212.11403MR0267212DOI10.1137/0119008
  31. Tian, Y., Cai, Y., Fu, Y., Li, T., 10.1186/s13662-015-0604-6, Adv. Difference Equ. 2015 (2015), Article ID 267, 14 pages. (2015) Zbl1422.34196MR3391600DOI10.1186/s13662-015-0604-6
  32. Tunç, C., 10.2298/FIL1003001T, Filomat 24 (2010), 1-10. (2010) Zbl1299.34244MR2791725DOI10.2298/FIL1003001T
  33. Tunç, C., 10.14232/ejqtde.2010.1.1, Electron. J. Qual. Theory Differ. Equ. 2010 (2010), Article ID 1, 12 pages. (2010) Zbl1201.34123MR2577154DOI10.14232/ejqtde.2010.1.1
  34. Yu, J., Asymptotic stability for a class of nonautonomous neutral differential equations, Chin. Ann. Math., Ser. B 18 (1997), 449-456. (1997) Zbl0894.34072MR1483728
  35. Yu, J., Wang, Z., Qian, C., 10.1017/S0004972700030057, Bull. Aust. Math. Soc. 45 (1992), 195-200. (1992) Zbl0729.34052MR1155477DOI10.1017/S0004972700030057
  36. Zhang, L., Si, L., Global asymptotic stability of a class of third order nonlinear system, Acta Math. Appl. Sin. 30 (2007), 99-103 Chinese. (2007) Zbl1125.34037MR2339313

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.