A free boundary problem for some modified predator-prey model in a higher dimensional environment
Hongmei Cheng; Qinhe Fang; Yang Xia
Applications of Mathematics (2022)
- Volume: 67, Issue: 5, page 615-632
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topCheng, Hongmei, Fang, Qinhe, and Xia, Yang. "A free boundary problem for some modified predator-prey model in a higher dimensional environment." Applications of Mathematics 67.5 (2022): 615-632. <http://eudml.org/doc/298473>.
@article{Cheng2022,
abstract = {We focus on the free boundary problems for a Leslie-Gower predator-prey model with radial symmetry in a higher dimensional environment that is initially well populated by the prey. This free boundary problem is used to describe the spreading of a new introduced predator. We first establish that a spreading-vanishing dichotomy holds for this model. Namely, the predator either successfully spreads to the entire space as $t$ goes to infinity and survives in the new environment, or it fails to establish and dies out in the long term. The longterm behavior of the solution and the criteria for spreading and vanishing are also obtained. Moreover, when spreading of the predator happens, we provide some rough estimates of the spreading speed.},
author = {Cheng, Hongmei, Fang, Qinhe, Xia, Yang},
journal = {Applications of Mathematics},
keywords = {free boundary; predator-prey model; spreading-vanishing dichotomy; spreading speed},
language = {eng},
number = {5},
pages = {615-632},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A free boundary problem for some modified predator-prey model in a higher dimensional environment},
url = {http://eudml.org/doc/298473},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Cheng, Hongmei
AU - Fang, Qinhe
AU - Xia, Yang
TI - A free boundary problem for some modified predator-prey model in a higher dimensional environment
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 5
SP - 615
EP - 632
AB - We focus on the free boundary problems for a Leslie-Gower predator-prey model with radial symmetry in a higher dimensional environment that is initially well populated by the prey. This free boundary problem is used to describe the spreading of a new introduced predator. We first establish that a spreading-vanishing dichotomy holds for this model. Namely, the predator either successfully spreads to the entire space as $t$ goes to infinity and survives in the new environment, or it fails to establish and dies out in the long term. The longterm behavior of the solution and the criteria for spreading and vanishing are also obtained. Moreover, when spreading of the predator happens, we provide some rough estimates of the spreading speed.
LA - eng
KW - free boundary; predator-prey model; spreading-vanishing dichotomy; spreading speed
UR - http://eudml.org/doc/298473
ER -
References
top- Aronson, D. G., Weinberger, H. F., 10.1007/BFb0070595, Partial Differential Equations and Related Topics Lecture Notes in Mathematics 466. Springer, Berlin (1975), 5-49. (1975) Zbl0325.35050MR0427837DOI10.1007/BFb0070595
- Aronson, D. G., Weinberger, H. F., 10.1016/0001-8708(78)90130-5, Adv. Math. 30 (1978), 33-76. (1978) Zbl0407.92014MR511740DOI10.1016/0001-8708(78)90130-5
- Bunting, G., Du, Y., Krakowski, K., 10.3934/nhm.2012.7.583, Netw. Heterog. Media 7 (2012), 583-603. (2012) Zbl1302.35194MR3004677DOI10.3934/nhm.2012.7.583
- Cantrell, R. S., Cosner, C., 10.1002/0470871296, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Chichester (2003). (2003) Zbl1087.92058MR2191264DOI10.1002/0470871296
- Cheng, H., Yuan, R., 10.1515/fca-2015-0035, Frac. Calc. Appl. Anal. 18 (2015), 565-579. (2015) Zbl06441500MR3351488DOI10.1515/fca-2015-0035
- Cheng, H., Yuan, R., 10.3934/dcds.2017236, Discrete Contin. Dyn. Syst. 37 (2017), 5422-5454. (2017) Zbl1368.35063MR3668369DOI10.3934/dcds.2017236
- Cheng, H., Yuan, R., 10.1016/j.amc.2018.04.049, Appl. Math. Comput. 338 (2018), 12-24. (2018) Zbl1427.35117MR3843677DOI10.1016/j.amc.2018.04.049
- Du, Y., Guo, Z., 10.1016/j.jde.2011.02.011, J. Differ. Equations 250 (2011), 4336-4366. (2011) Zbl1222.35096MR2793257DOI10.1016/j.jde.2011.02.011
- Du, Y., Guo, Z., 10.1016/j.jde.2012.04.014, J. Differ. Equations 253 (2012), 996-1035. (2012) Zbl1257.35110MR2922661DOI10.1016/j.jde.2012.04.014
- Du, Y., Guo, Z., Peng, R., 10.1016/j.jfa.2013.07.016, J. Funct. Anal. 265 (2013), 2089-2142. (2013) Zbl1282.35419MR3084498DOI10.1016/j.jfa.2013.07.016
- Du, Y., Hsu, S.-B., 10.1016/j.jde.2004.05.010, J. Differ. Equations 203 (2004), 331-364. (2004) Zbl1330.35467MR2073690DOI10.1016/j.jde.2004.05.010
- Du, Y., Lin, Z., 10.1137/090771089, SIAM J. Math. Anal. 42 (2010), 377-405. (2010) Zbl1219.35373MR2607347DOI10.1137/090771089
- Du, Y., Lin, Z., 10.3934/dcdsb.2014.19.3105, Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 3105-3132. (2014) Zbl1310.35245MR3327894DOI10.3934/dcdsb.2014.19.3105
- Du, Y., Lou, B., 10.4171/JEMS/568, J. Eur. Math. Soc. (JEMS) 17 (2015), 2673-2724. (2015) Zbl1331.35399MR3420519DOI10.4171/JEMS/568
- Ducrot, A., 10.1016/j.matpur.2012.10.009, J. Math. Pures Appl. (9) 100 (2013), 1-15. (2013) Zbl1284.35066MR3057299DOI10.1016/j.matpur.2012.10.009
- Fisher, R. A., 10.1111/j.1469-1809.1937.tb02153.x, Ann. Eugenics, London 7 (1937), 355-369 9999JFM99999 63.1111.04. (1937) DOI10.1111/j.1469-1809.1937.tb02153.x
- Guo, J.-S., Wu, C.-H., 10.1007/s10884-012-9267-0, J. Dyn. Differ. Equations 24 (2012), 873-895. (2012) Zbl1263.35132MR3000608DOI10.1007/s10884-012-9267-0
- Hilhorst, D., Iida, M., Mimura, M., Ninomiya, H., 10.1007/BF03168569, Japan J. Ind. Appl. Math. 18 (2001), 161-180. (2001) Zbl0980.35178MR1842906DOI10.1007/BF03168569
- Kaneko, Y., Yamada, Y., A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl. 21 (2011), 467-492. (2011) Zbl1254.35248MR2953128
- Korobeinikov, A., 10.1016/S0893-9659(01)80029-X, Appl. Math. Lett. 14 (2001), 697-699. (2001) Zbl0999.92036MR1836072DOI10.1016/S0893-9659(01)80029-X
- Leslie, P. H., Gower, J. C., 10.1093/biomet/47.3-4.219, Biometrika 47 (1960), 219-234. (1960) Zbl0103.12502MR0122603DOI10.1093/biomet/47.3-4.219
- Lieberman, G. M., 10.1142/3302, World Scientific, Singapore (1996). (1996) Zbl0884.35001MR1465184DOI10.1142/3302
- Lin, Z., 10.1088/0951-7715/20/8/004, Nonlinearity 20 (2007), 1883-1892. (2007) Zbl1126.35111MR2343682DOI10.1088/0951-7715/20/8/004
- Liu, Y., Guo, Z., Smaily, M. E., Wang, L., 10.3934/dcdss.2019133, Discrete Contin. Dyn. Syst., Ser. S 12 (2019), 2063-2084. (2019) Zbl1420.35130MR3984737DOI10.3934/dcdss.2019133
- Mimura, M., Yamada, Y., Yotsutani, S., 10.1007/BF03167042, Japan J. Appl. Math. 2 (1985), 151-186. (1985) Zbl0593.92019MR0839323DOI10.1007/BF03167042
- Mimura, M., Yamada, Y., Yotsutani, S., 10.32917/hmj/1206130304, Hiroshima Math. J. 16 (1986), 477-498. (1986) Zbl0617.35135MR0867576DOI10.32917/hmj/1206130304
- Mimura, M., Yamada, Y., Yotsutani, S., 10.32917/hmj/1206130066, Hiroshima Math. J. 17 (1987), 241-280. (1987) Zbl0649.35089MR0909614DOI10.32917/hmj/1206130066
- Peng, R., Zhao, X.-Q., 10.3934/dcds.2013.33.2007, Discrete Contin. Dyn. Syst. 33 (2013), 2007-2031. (2013) Zbl1273.35327MR3002741DOI10.3934/dcds.2013.33.2007
- Wang, M., 10.1016/j.jde.2014.02.013, J. Differ. Equations 256 (2014), 3365-3394. (2014) Zbl1317.35110MR3177899DOI10.1016/j.jde.2014.02.013
- Wang, M., Zhao, J., 10.1007/s10884-015-9503-5, J. Dyn. Differ. Equations 29 (2017), 957-979. (2017) Zbl1373.35164MR3694817DOI10.1007/s10884-015-9503-5
- Zhao, J., Wang, M., 10.1016/j.nonrwa.2013.10.003, Nonlinear Anal., Real World Appl. 16 (2014), 250-263. (2014) Zbl1296.35220MR3123816DOI10.1016/j.nonrwa.2013.10.003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.