A free boundary problem for some modified predator-prey model in a higher dimensional environment

Hongmei Cheng; Qinhe Fang; Yang Xia

Applications of Mathematics (2022)

  • Volume: 67, Issue: 5, page 615-632
  • ISSN: 0862-7940

Abstract

top
We focus on the free boundary problems for a Leslie-Gower predator-prey model with radial symmetry in a higher dimensional environment that is initially well populated by the prey. This free boundary problem is used to describe the spreading of a new introduced predator. We first establish that a spreading-vanishing dichotomy holds for this model. Namely, the predator either successfully spreads to the entire space as t goes to infinity and survives in the new environment, or it fails to establish and dies out in the long term. The longterm behavior of the solution and the criteria for spreading and vanishing are also obtained. Moreover, when spreading of the predator happens, we provide some rough estimates of the spreading speed.

How to cite

top

Cheng, Hongmei, Fang, Qinhe, and Xia, Yang. "A free boundary problem for some modified predator-prey model in a higher dimensional environment." Applications of Mathematics 67.5 (2022): 615-632. <http://eudml.org/doc/298473>.

@article{Cheng2022,
abstract = {We focus on the free boundary problems for a Leslie-Gower predator-prey model with radial symmetry in a higher dimensional environment that is initially well populated by the prey. This free boundary problem is used to describe the spreading of a new introduced predator. We first establish that a spreading-vanishing dichotomy holds for this model. Namely, the predator either successfully spreads to the entire space as $t$ goes to infinity and survives in the new environment, or it fails to establish and dies out in the long term. The longterm behavior of the solution and the criteria for spreading and vanishing are also obtained. Moreover, when spreading of the predator happens, we provide some rough estimates of the spreading speed.},
author = {Cheng, Hongmei, Fang, Qinhe, Xia, Yang},
journal = {Applications of Mathematics},
keywords = {free boundary; predator-prey model; spreading-vanishing dichotomy; spreading speed},
language = {eng},
number = {5},
pages = {615-632},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A free boundary problem for some modified predator-prey model in a higher dimensional environment},
url = {http://eudml.org/doc/298473},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Cheng, Hongmei
AU - Fang, Qinhe
AU - Xia, Yang
TI - A free boundary problem for some modified predator-prey model in a higher dimensional environment
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 5
SP - 615
EP - 632
AB - We focus on the free boundary problems for a Leslie-Gower predator-prey model with radial symmetry in a higher dimensional environment that is initially well populated by the prey. This free boundary problem is used to describe the spreading of a new introduced predator. We first establish that a spreading-vanishing dichotomy holds for this model. Namely, the predator either successfully spreads to the entire space as $t$ goes to infinity and survives in the new environment, or it fails to establish and dies out in the long term. The longterm behavior of the solution and the criteria for spreading and vanishing are also obtained. Moreover, when spreading of the predator happens, we provide some rough estimates of the spreading speed.
LA - eng
KW - free boundary; predator-prey model; spreading-vanishing dichotomy; spreading speed
UR - http://eudml.org/doc/298473
ER -

References

top
  1. Aronson, D. G., Weinberger, H. F., 10.1007/BFb0070595, Partial Differential Equations and Related Topics Lecture Notes in Mathematics 466. Springer, Berlin (1975), 5-49. (1975) Zbl0325.35050MR0427837DOI10.1007/BFb0070595
  2. Aronson, D. G., Weinberger, H. F., 10.1016/0001-8708(78)90130-5, Adv. Math. 30 (1978), 33-76. (1978) Zbl0407.92014MR511740DOI10.1016/0001-8708(78)90130-5
  3. Bunting, G., Du, Y., Krakowski, K., 10.3934/nhm.2012.7.583, Netw. Heterog. Media 7 (2012), 583-603. (2012) Zbl1302.35194MR3004677DOI10.3934/nhm.2012.7.583
  4. Cantrell, R. S., Cosner, C., 10.1002/0470871296, Wiley Series in Mathematical and Computational Biology. John Wiley & Sons, Chichester (2003). (2003) Zbl1087.92058MR2191264DOI10.1002/0470871296
  5. Cheng, H., Yuan, R., 10.1515/fca-2015-0035, Frac. Calc. Appl. Anal. 18 (2015), 565-579. (2015) Zbl06441500MR3351488DOI10.1515/fca-2015-0035
  6. Cheng, H., Yuan, R., 10.3934/dcds.2017236, Discrete Contin. Dyn. Syst. 37 (2017), 5422-5454. (2017) Zbl1368.35063MR3668369DOI10.3934/dcds.2017236
  7. Cheng, H., Yuan, R., 10.1016/j.amc.2018.04.049, Appl. Math. Comput. 338 (2018), 12-24. (2018) Zbl1427.35117MR3843677DOI10.1016/j.amc.2018.04.049
  8. Du, Y., Guo, Z., 10.1016/j.jde.2011.02.011, J. Differ. Equations 250 (2011), 4336-4366. (2011) Zbl1222.35096MR2793257DOI10.1016/j.jde.2011.02.011
  9. Du, Y., Guo, Z., 10.1016/j.jde.2012.04.014, J. Differ. Equations 253 (2012), 996-1035. (2012) Zbl1257.35110MR2922661DOI10.1016/j.jde.2012.04.014
  10. Du, Y., Guo, Z., Peng, R., 10.1016/j.jfa.2013.07.016, J. Funct. Anal. 265 (2013), 2089-2142. (2013) Zbl1282.35419MR3084498DOI10.1016/j.jfa.2013.07.016
  11. Du, Y., Hsu, S.-B., 10.1016/j.jde.2004.05.010, J. Differ. Equations 203 (2004), 331-364. (2004) Zbl1330.35467MR2073690DOI10.1016/j.jde.2004.05.010
  12. Du, Y., Lin, Z., 10.1137/090771089, SIAM J. Math. Anal. 42 (2010), 377-405. (2010) Zbl1219.35373MR2607347DOI10.1137/090771089
  13. Du, Y., Lin, Z., 10.3934/dcdsb.2014.19.3105, Discrete Contin. Dyn. Syst., Ser. B 19 (2014), 3105-3132. (2014) Zbl1310.35245MR3327894DOI10.3934/dcdsb.2014.19.3105
  14. Du, Y., Lou, B., 10.4171/JEMS/568, J. Eur. Math. Soc. (JEMS) 17 (2015), 2673-2724. (2015) Zbl1331.35399MR3420519DOI10.4171/JEMS/568
  15. Ducrot, A., 10.1016/j.matpur.2012.10.009, J. Math. Pures Appl. (9) 100 (2013), 1-15. (2013) Zbl1284.35066MR3057299DOI10.1016/j.matpur.2012.10.009
  16. Fisher, R. A., 10.1111/j.1469-1809.1937.tb02153.x, Ann. Eugenics, London 7 (1937), 355-369 9999JFM99999 63.1111.04. (1937) DOI10.1111/j.1469-1809.1937.tb02153.x
  17. Guo, J.-S., Wu, C.-H., 10.1007/s10884-012-9267-0, J. Dyn. Differ. Equations 24 (2012), 873-895. (2012) Zbl1263.35132MR3000608DOI10.1007/s10884-012-9267-0
  18. Hilhorst, D., Iida, M., Mimura, M., Ninomiya, H., 10.1007/BF03168569, Japan J. Ind. Appl. Math. 18 (2001), 161-180. (2001) Zbl0980.35178MR1842906DOI10.1007/BF03168569
  19. Kaneko, Y., Yamada, Y., A free boundary problem for a reaction-diffusion equation appearing in ecology, Adv. Math. Sci. Appl. 21 (2011), 467-492. (2011) Zbl1254.35248MR2953128
  20. Korobeinikov, A., 10.1016/S0893-9659(01)80029-X, Appl. Math. Lett. 14 (2001), 697-699. (2001) Zbl0999.92036MR1836072DOI10.1016/S0893-9659(01)80029-X
  21. Leslie, P. H., Gower, J. C., 10.1093/biomet/47.3-4.219, Biometrika 47 (1960), 219-234. (1960) Zbl0103.12502MR0122603DOI10.1093/biomet/47.3-4.219
  22. Lieberman, G. M., 10.1142/3302, World Scientific, Singapore (1996). (1996) Zbl0884.35001MR1465184DOI10.1142/3302
  23. Lin, Z., 10.1088/0951-7715/20/8/004, Nonlinearity 20 (2007), 1883-1892. (2007) Zbl1126.35111MR2343682DOI10.1088/0951-7715/20/8/004
  24. Liu, Y., Guo, Z., Smaily, M. E., Wang, L., 10.3934/dcdss.2019133, Discrete Contin. Dyn. Syst., Ser. S 12 (2019), 2063-2084. (2019) Zbl1420.35130MR3984737DOI10.3934/dcdss.2019133
  25. Mimura, M., Yamada, Y., Yotsutani, S., 10.1007/BF03167042, Japan J. Appl. Math. 2 (1985), 151-186. (1985) Zbl0593.92019MR0839323DOI10.1007/BF03167042
  26. Mimura, M., Yamada, Y., Yotsutani, S., 10.32917/hmj/1206130304, Hiroshima Math. J. 16 (1986), 477-498. (1986) Zbl0617.35135MR0867576DOI10.32917/hmj/1206130304
  27. Mimura, M., Yamada, Y., Yotsutani, S., 10.32917/hmj/1206130066, Hiroshima Math. J. 17 (1987), 241-280. (1987) Zbl0649.35089MR0909614DOI10.32917/hmj/1206130066
  28. Peng, R., Zhao, X.-Q., 10.3934/dcds.2013.33.2007, Discrete Contin. Dyn. Syst. 33 (2013), 2007-2031. (2013) Zbl1273.35327MR3002741DOI10.3934/dcds.2013.33.2007
  29. Wang, M., 10.1016/j.jde.2014.02.013, J. Differ. Equations 256 (2014), 3365-3394. (2014) Zbl1317.35110MR3177899DOI10.1016/j.jde.2014.02.013
  30. Wang, M., Zhao, J., 10.1007/s10884-015-9503-5, J. Dyn. Differ. Equations 29 (2017), 957-979. (2017) Zbl1373.35164MR3694817DOI10.1007/s10884-015-9503-5
  31. Zhao, J., Wang, M., 10.1016/j.nonrwa.2013.10.003, Nonlinear Anal., Real World Appl. 16 (2014), 250-263. (2014) Zbl1296.35220MR3123816DOI10.1016/j.nonrwa.2013.10.003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.