Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold

Payel Karmakar

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 3, page 419-434
  • ISSN: 0862-7959

Abstract

top
The present paper deals with the study of some properties of anti-invariant submanifolds of trans-Sasakian manifold with respect to a new non-metric affine connection called Zamkovoy connection. The nature of Ricci flat, concircularly flat, ξ -projectively flat, M -projectively flat, ξ - M -projectively flat, pseudo projectively flat and ξ -pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection are discussed. Moreover, Ricci solitons on Ricci flat, concircularly flat, M -projectively flat and pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting the aforesaid connection are studied. At last, some conclusions are made after observing all the results and an example of an anti-invariant submanifold of a trans-Sasakian manifold is given in which all the results can be verified easily.

How to cite

top

Karmakar, Payel. "Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold." Mathematica Bohemica 147.3 (2022): 419-434. <http://eudml.org/doc/298474>.

@article{Karmakar2022,
abstract = {The present paper deals with the study of some properties of anti-invariant submanifolds of trans-Sasakian manifold with respect to a new non-metric affine connection called Zamkovoy connection. The nature of Ricci flat, concircularly flat, $\xi $-projectively flat, $M$-projectively flat, $\xi $-$M$-projectively flat, pseudo projectively flat and $\xi $-pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection are discussed. Moreover, Ricci solitons on Ricci flat, concircularly flat, $M$-projectively flat and pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting the aforesaid connection are studied. At last, some conclusions are made after observing all the results and an example of an anti-invariant submanifold of a trans-Sasakian manifold is given in which all the results can be verified easily.},
author = {Karmakar, Payel},
journal = {Mathematica Bohemica},
keywords = {anti-invariant submanifold; trans-Sasakian manifold; Zamkovoy connection; $\eta $-Einstein manifold; Ricci curvature tensor; concircular curvature tensor; projective curvature tensor; $M$-projective curvature tensor; pseudo projective curvature tensor; Ricci soliton},
language = {eng},
number = {3},
pages = {419-434},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold},
url = {http://eudml.org/doc/298474},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Karmakar, Payel
TI - Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 3
SP - 419
EP - 434
AB - The present paper deals with the study of some properties of anti-invariant submanifolds of trans-Sasakian manifold with respect to a new non-metric affine connection called Zamkovoy connection. The nature of Ricci flat, concircularly flat, $\xi $-projectively flat, $M$-projectively flat, $\xi $-$M$-projectively flat, pseudo projectively flat and $\xi $-pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection are discussed. Moreover, Ricci solitons on Ricci flat, concircularly flat, $M$-projectively flat and pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting the aforesaid connection are studied. At last, some conclusions are made after observing all the results and an example of an anti-invariant submanifold of a trans-Sasakian manifold is given in which all the results can be verified easily.
LA - eng
KW - anti-invariant submanifold; trans-Sasakian manifold; Zamkovoy connection; $\eta $-Einstein manifold; Ricci curvature tensor; concircular curvature tensor; projective curvature tensor; $M$-projective curvature tensor; pseudo projective curvature tensor; Ricci soliton
UR - http://eudml.org/doc/298474
ER -

References

top
  1. Baishya, K. K., Biswas, A., 10.31926/but.mif.2019.12.61.2.4, Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 12 (2019), 233-246. (2019) MR4059157DOI10.31926/but.mif.2019.12.61.2.4
  2. Biswas, A., Baishya, K. K., A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds, Sci. Stud. Res., Ser. Math. Inform. 29 (2019), 59-72. (2019) MR4089056
  3. Blaga, A. M., 10.30755/NSJOM.2014.050, Novi Sad J. Math. 45 (2015), 131-142. (2015) Zbl06749324MR3432562DOI10.30755/NSJOM.2014.050
  4. Chaubey, S. K., Ojha, R. H., On the m -projective curvature tensor of a Kenmotsu manifold, Differ. Geom. Dyn. Syst. 12 (2010), 52-60. (2010) Zbl1200.53028MR2606546
  5. Chaubey, S. K., Prakash, S., Nivas, R., Some properties of m -projective curvature tensor in Kenmotsu manifolds, Bull. Math. Anal. Appl. 4 (2012), 48-56. (2012) Zbl1314.53053MR2989709
  6. Das, A., Mandal, A., Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection, Aligarh Bull. Math. 39 (2020), 47-61. (2020) MR4380665
  7. De, U. C., Shaikh, A. A., Complex Manifolds and Contact Manifolds, Narosa Publishing House, New Delhi (2009). (2009) Zbl1208.53001MR2934086
  8. Hamilton, R. S., 10.4310/jdg/1214436922, J. Differ. Geom. 17 (1982), 255-306. (1982) Zbl0504.53034MR0664497DOI10.4310/jdg/1214436922
  9. Hamilton, R. S., 10.1090/conm/071, Mathematics and General Relativity Contemporary Mathematics 71. AMS, Providence (1988), 237-262. (1988) Zbl0663.53031MR0954419DOI10.1090/conm/071
  10. Karmakar, P., Bhattacharyya, A., Anti-invariant submanifolds of some indefinite almost contact and paracontact manifolds, Bull. Calcutta Math. Soc. 112 (2020), 95-108. (2020) 
  11. Mandal, A., Das, A., 10.37418/amsj.9.10.115, Adv. Math., Sci. J. 9 (2020), 8929-8940. (2020) DOI10.37418/amsj.9.10.115
  12. Mandal, A., Das, A., 10.22342/jims.26.3.928.369-379, J. Indones. Math. Soc. 26 (2020), 369-379. (2020) Zbl1454.53017MR4188662DOI10.22342/jims.26.3.928.369-379
  13. Mandal, A., Das, A., Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection, Bull. Cal. Math. Soc. 112 (2020), 431-450. (2020) MR2676120
  14. Mandal, A., Das, A., 10.22342/jims.27.2.960.137-149, J. Indones. Math. Soc. 27 (2021), 137-149. (2021) MR4294370DOI10.22342/jims.27.2.960.137-149
  15. Nagaraja, H. G., Somashekhara, G., On pseudo projective curvature tensor in Sasakian manifolds, Int. J. Contemp. Math. Sci. 6 (2011), 1319-1328. (2011) Zbl1252.53058MR2837958
  16. Narain, D., Prakash, A., Prasad, B., A pseudo projective curvature tensor on a Lorentzian para-Sasakian manifold, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 55 (2009), 275-284. (2009) Zbl1199.53040MR2562248
  17. Ojha, R. H., On Sasakian manifold, Kyungpook Math. J. 13 (1973), 211-215. (1973) Zbl0289.53036MR0339011
  18. Ojha, R. H., A note on the M -projective curvature tensor, Indian J. Pure Appl. Math. 8 (1977), 1531-1534. (1977) Zbl0426.53022MR0548666
  19. Ojha, R. H., M -projectively flat Sasakian manifolds, Indian J. Pure Appl. Math. 17 (1986), 481-484. (1986) Zbl0631.53038MR0840755
  20. Pandey, H. B., Kumar, A., Anti-invariant submanifolds of almost para-contact manifolds, Indian J. Pure Appl. Math. 16 (1985), 586-590. (1985) Zbl0585.53015MR0814389
  21. Pokhariyal, G. P., Mishra, R. S., Curvature tensors and their relativistic significance. II, Yokohama Math. J. 19 (1971), 97-103. (1971) Zbl0229.53026MR0426797
  22. Prakasha, D. G., Mirji, K., 10.22190/FUMI1701117P, Facta Univ., Ser. Math. Inf. 32 (2017), 117-128. (2017) Zbl07342514MR3633228DOI10.22190/FUMI1701117P
  23. Prasad, B., A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc. 94 (2002), 163-166. (2002) Zbl1028.53016MR1947297
  24. Shaikh, A. A., Kundu, H., 10.1007/s00022-013-0200-4, J. Geom. 105 (2014), 139-165. (2014) Zbl1297.53026MR3176344DOI10.1007/s00022-013-0200-4
  25. Shukla, S. S., Singh, D. D., On ( ϵ ) -trans-Sasakian manifolds, Int. J. Math. Anal., Ruse 4 (2010), 2401-2414. (2010) Zbl1227.53045MR2770033
  26. Singh, J. P., On m -projectively flat almost pseudo Ricci symmetric manifolds, Acta Math. Univ. Comen., New Ser. 86 (2017), 335-343. (2017) Zbl1399.53059MR3702446
  27. Takahashi, T., 10.2748/tmj/1178242996, Tohoku Math. J., II. Ser. 21 (1969), 271-290. (1969) Zbl0187.43601MR0248698DOI10.2748/tmj/1178242996
  28. Tripathi, M. M., Gupta, P., On τ -curvature tensor in K -contact and Sasakian manifolds, Int. Electron. J. Geom. 4 (2011), 32-47. (2011) Zbl1221.53079MR2801462
  29. Yano, K., 10.3792/pia/1195579139, Proc. Acad., Tokyo 16 (1940), 195-200 9999JFM99999 66.0888.01. (1940) MR0003113DOI10.3792/pia/1195579139
  30. Yano, K., Bochner, S., 10.1515/9781400882205, Annals of Mathematics Studies 32. Princeton University Press, Princeton (1953). (1953) Zbl0051.39402MR0062505DOI10.1515/9781400882205
  31. Yano, K., Kon, M., 10.2748/tmj/1178240692, Tohoku Math. J., II. Ser. 29 (1977), 9-23. (1977) Zbl0353.53033MR0433356DOI10.2748/tmj/1178240692
  32. Zamkovoy, S., 10.1007/s10455-008-9147-3, Ann. Global Anal. Geom. 36 (2009), 37-60. (2009) Zbl1177.53031MR2520029DOI10.1007/s10455-008-9147-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.