Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold
Mathematica Bohemica (2022)
- Volume: 147, Issue: 3, page 419-434
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKarmakar, Payel. "Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold." Mathematica Bohemica 147.3 (2022): 419-434. <http://eudml.org/doc/298474>.
@article{Karmakar2022,
abstract = {The present paper deals with the study of some properties of anti-invariant submanifolds of trans-Sasakian manifold with respect to a new non-metric affine connection called Zamkovoy connection. The nature of Ricci flat, concircularly flat, $\xi $-projectively flat, $M$-projectively flat, $\xi $-$M$-projectively flat, pseudo projectively flat and $\xi $-pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection are discussed. Moreover, Ricci solitons on Ricci flat, concircularly flat, $M$-projectively flat and pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting the aforesaid connection are studied. At last, some conclusions are made after observing all the results and an example of an anti-invariant submanifold of a trans-Sasakian manifold is given in which all the results can be verified easily.},
author = {Karmakar, Payel},
journal = {Mathematica Bohemica},
keywords = {anti-invariant submanifold; trans-Sasakian manifold; Zamkovoy connection; $\eta $-Einstein manifold; Ricci curvature tensor; concircular curvature tensor; projective curvature tensor; $M$-projective curvature tensor; pseudo projective curvature tensor; Ricci soliton},
language = {eng},
number = {3},
pages = {419-434},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold},
url = {http://eudml.org/doc/298474},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Karmakar, Payel
TI - Curvature tensors and Ricci solitons with respect to Zamkovoy connection in anti-invariant submanifolds of trans-Sasakian manifold
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 3
SP - 419
EP - 434
AB - The present paper deals with the study of some properties of anti-invariant submanifolds of trans-Sasakian manifold with respect to a new non-metric affine connection called Zamkovoy connection. The nature of Ricci flat, concircularly flat, $\xi $-projectively flat, $M$-projectively flat, $\xi $-$M$-projectively flat, pseudo projectively flat and $\xi $-pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting Zamkovoy connection are discussed. Moreover, Ricci solitons on Ricci flat, concircularly flat, $M$-projectively flat and pseudo projectively flat anti-invariant submanifolds of trans-Sasakian manifold admitting the aforesaid connection are studied. At last, some conclusions are made after observing all the results and an example of an anti-invariant submanifold of a trans-Sasakian manifold is given in which all the results can be verified easily.
LA - eng
KW - anti-invariant submanifold; trans-Sasakian manifold; Zamkovoy connection; $\eta $-Einstein manifold; Ricci curvature tensor; concircular curvature tensor; projective curvature tensor; $M$-projective curvature tensor; pseudo projective curvature tensor; Ricci soliton
UR - http://eudml.org/doc/298474
ER -
References
top- Baishya, K. K., Biswas, A., 10.31926/but.mif.2019.12.61.2.4, Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 12 (2019), 233-246. (2019) MR4059157DOI10.31926/but.mif.2019.12.61.2.4
- Biswas, A., Baishya, K. K., A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds, Sci. Stud. Res., Ser. Math. Inform. 29 (2019), 59-72. (2019) MR4089056
- Blaga, A. M., 10.30755/NSJOM.2014.050, Novi Sad J. Math. 45 (2015), 131-142. (2015) Zbl06749324MR3432562DOI10.30755/NSJOM.2014.050
- Chaubey, S. K., Ojha, R. H., On the -projective curvature tensor of a Kenmotsu manifold, Differ. Geom. Dyn. Syst. 12 (2010), 52-60. (2010) Zbl1200.53028MR2606546
- Chaubey, S. K., Prakash, S., Nivas, R., Some properties of -projective curvature tensor in Kenmotsu manifolds, Bull. Math. Anal. Appl. 4 (2012), 48-56. (2012) Zbl1314.53053MR2989709
- Das, A., Mandal, A., Study of Ricci solitons on concircularly flat Sasakian manifolds admitting Zamkovoy connection, Aligarh Bull. Math. 39 (2020), 47-61. (2020) MR4380665
- De, U. C., Shaikh, A. A., Complex Manifolds and Contact Manifolds, Narosa Publishing House, New Delhi (2009). (2009) Zbl1208.53001MR2934086
- Hamilton, R. S., 10.4310/jdg/1214436922, J. Differ. Geom. 17 (1982), 255-306. (1982) Zbl0504.53034MR0664497DOI10.4310/jdg/1214436922
- Hamilton, R. S., 10.1090/conm/071, Mathematics and General Relativity Contemporary Mathematics 71. AMS, Providence (1988), 237-262. (1988) Zbl0663.53031MR0954419DOI10.1090/conm/071
- Karmakar, P., Bhattacharyya, A., Anti-invariant submanifolds of some indefinite almost contact and paracontact manifolds, Bull. Calcutta Math. Soc. 112 (2020), 95-108. (2020)
- Mandal, A., Das, A., 10.37418/amsj.9.10.115, Adv. Math., Sci. J. 9 (2020), 8929-8940. (2020) DOI10.37418/amsj.9.10.115
- Mandal, A., Das, A., 10.22342/jims.26.3.928.369-379, J. Indones. Math. Soc. 26 (2020), 369-379. (2020) Zbl1454.53017MR4188662DOI10.22342/jims.26.3.928.369-379
- Mandal, A., Das, A., Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection, Bull. Cal. Math. Soc. 112 (2020), 431-450. (2020) MR2676120
- Mandal, A., Das, A., 10.22342/jims.27.2.960.137-149, J. Indones. Math. Soc. 27 (2021), 137-149. (2021) MR4294370DOI10.22342/jims.27.2.960.137-149
- Nagaraja, H. G., Somashekhara, G., On pseudo projective curvature tensor in Sasakian manifolds, Int. J. Contemp. Math. Sci. 6 (2011), 1319-1328. (2011) Zbl1252.53058MR2837958
- Narain, D., Prakash, A., Prasad, B., A pseudo projective curvature tensor on a Lorentzian para-Sasakian manifold, An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 55 (2009), 275-284. (2009) Zbl1199.53040MR2562248
- Ojha, R. H., On Sasakian manifold, Kyungpook Math. J. 13 (1973), 211-215. (1973) Zbl0289.53036MR0339011
- Ojha, R. H., A note on the -projective curvature tensor, Indian J. Pure Appl. Math. 8 (1977), 1531-1534. (1977) Zbl0426.53022MR0548666
- Ojha, R. H., -projectively flat Sasakian manifolds, Indian J. Pure Appl. Math. 17 (1986), 481-484. (1986) Zbl0631.53038MR0840755
- Pandey, H. B., Kumar, A., Anti-invariant submanifolds of almost para-contact manifolds, Indian J. Pure Appl. Math. 16 (1985), 586-590. (1985) Zbl0585.53015MR0814389
- Pokhariyal, G. P., Mishra, R. S., Curvature tensors and their relativistic significance. II, Yokohama Math. J. 19 (1971), 97-103. (1971) Zbl0229.53026MR0426797
- Prakasha, D. G., Mirji, K., 10.22190/FUMI1701117P, Facta Univ., Ser. Math. Inf. 32 (2017), 117-128. (2017) Zbl07342514MR3633228DOI10.22190/FUMI1701117P
- Prasad, B., A pseudo projective curvature tensor on a Riemannian manifold, Bull. Calcutta Math. Soc. 94 (2002), 163-166. (2002) Zbl1028.53016MR1947297
- Shaikh, A. A., Kundu, H., 10.1007/s00022-013-0200-4, J. Geom. 105 (2014), 139-165. (2014) Zbl1297.53026MR3176344DOI10.1007/s00022-013-0200-4
- Shukla, S. S., Singh, D. D., On -trans-Sasakian manifolds, Int. J. Math. Anal., Ruse 4 (2010), 2401-2414. (2010) Zbl1227.53045MR2770033
- Singh, J. P., On -projectively flat almost pseudo Ricci symmetric manifolds, Acta Math. Univ. Comen., New Ser. 86 (2017), 335-343. (2017) Zbl1399.53059MR3702446
- Takahashi, T., 10.2748/tmj/1178242996, Tohoku Math. J., II. Ser. 21 (1969), 271-290. (1969) Zbl0187.43601MR0248698DOI10.2748/tmj/1178242996
- Tripathi, M. M., Gupta, P., On -curvature tensor in -contact and Sasakian manifolds, Int. Electron. J. Geom. 4 (2011), 32-47. (2011) Zbl1221.53079MR2801462
- Yano, K., 10.3792/pia/1195579139, Proc. Acad., Tokyo 16 (1940), 195-200 9999JFM99999 66.0888.01. (1940) MR0003113DOI10.3792/pia/1195579139
- Yano, K., Bochner, S., 10.1515/9781400882205, Annals of Mathematics Studies 32. Princeton University Press, Princeton (1953). (1953) Zbl0051.39402MR0062505DOI10.1515/9781400882205
- Yano, K., Kon, M., 10.2748/tmj/1178240692, Tohoku Math. J., II. Ser. 29 (1977), 9-23. (1977) Zbl0353.53033MR0433356DOI10.2748/tmj/1178240692
- Zamkovoy, S., 10.1007/s10455-008-9147-3, Ann. Global Anal. Geom. 36 (2009), 37-60. (2009) Zbl1177.53031MR2520029DOI10.1007/s10455-008-9147-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.