Generalized atomic subspaces for operators in Hilbert spaces
Prasenjit Ghosh; Tapas Kumar Samanta
Mathematica Bohemica (2022)
- Volume: 147, Issue: 3, page 325-345
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topGhosh, Prasenjit, and Samanta, Tapas Kumar. "Generalized atomic subspaces for operators in Hilbert spaces." Mathematica Bohemica 147.3 (2022): 325-345. <http://eudml.org/doc/298481>.
@article{Ghosh2022,
abstract = {We introduce the notion of a $g$-atomic subspace for a bounded linear operator and construct several useful resolutions of the identity operator on a Hilbert space using the theory of $g$-fusion frames. Also, we shall describe the concept of frame operator for a pair of $g$-fusion Bessel sequences and some of their properties.},
author = {Ghosh, Prasenjit, Samanta, Tapas Kumar},
journal = {Mathematica Bohemica},
keywords = {frame; atomic subspace; $g$-fusion frame; $K$-$g$-fusion frame},
language = {eng},
number = {3},
pages = {325-345},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generalized atomic subspaces for operators in Hilbert spaces},
url = {http://eudml.org/doc/298481},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Ghosh, Prasenjit
AU - Samanta, Tapas Kumar
TI - Generalized atomic subspaces for operators in Hilbert spaces
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 3
SP - 325
EP - 345
AB - We introduce the notion of a $g$-atomic subspace for a bounded linear operator and construct several useful resolutions of the identity operator on a Hilbert space using the theory of $g$-fusion frames. Also, we shall describe the concept of frame operator for a pair of $g$-fusion Bessel sequences and some of their properties.
LA - eng
KW - frame; atomic subspace; $g$-fusion frame; $K$-$g$-fusion frame
UR - http://eudml.org/doc/298481
ER -
References
top- Ahmadi, R., Rahimlou, G., Sadri, V., Farfar, R. Zarghami, Constructions of -g-fusion frames and their duals in Hilbert spaces, Bull. Transilv. Univ. Braşov, Ser. III, Math. Inform. Phys. 13 (2020), 17-32. (2020) MR4136053
- Bhandari, A., Mukherjee, S., 10.1007/s13226-020-0448-y, Indian J. Pure Appl. Math. 51 (2020), 1039-1052. (2020) Zbl1456.42037MR4159339DOI10.1007/s13226-020-0448-y
- Casazza, P. G., Kutyniok, G., 10.1090/conm/345, Wavelets, Frames and Operator Theory Contemporary Mathematics 345. American Mathematical Society, Providence (2004), 87-114. (2004) Zbl1058.42019MR2066823DOI10.1090/conm/345
- Christensen, O., 10.1007/978-3-319-25613-9, Applied and Numerical Harmonic Analysis. Birkhäuser, Basel (2016). (2016) Zbl1348.42033MR3495345DOI10.1007/978-3-319-25613-9
- Daubechies, I., Grossmann, A., Meyer, Y., 10.1063/1.527388, J. Math. Phys. 27 (1986), 1271-1283. (1986) Zbl0608.46014MR0836025DOI10.1063/1.527388
- Douglas, R. G., 10.1090/S0002-9939-1966-0203464-1, Proc. Am. Math. Soc. 17 (1966), 413-415. (1966) Zbl0146.12503MR0203464DOI10.1090/S0002-9939-1966-0203464-1
- Duffin, R. J., Schaeffer, A. C., 10.1090/S0002-9947-1952-0047179-6, Trans. Am. Math. Soc. 72 (1952), 341-366. (1952) Zbl0049.32401MR0047179DOI10.1090/S0002-9947-1952-0047179-6
- Găvruţa, L., 10.1016/j.acha.2011.07.006, Appl. Comput. Harmon. Anal. 32 (2012), 139-144. (2012) Zbl1230.42038MR2854166DOI10.1016/j.acha.2011.07.006
- Găvruţa, L., Atomic decompositions for operators in reproducing kernel Hilbert spaces, Math. Rep., Buchar. 17 (2015), 303-314. (2015) Zbl1374.42057MR3417770
- Găvruţa, P., 10.1016/j.jmaa.2006.11.052, J. Math. Anal. Appl. 333 (2007), 871-879. (2007) Zbl1127.46016MR2331700DOI10.1016/j.jmaa.2006.11.052
- Ghosh, P., Samanta, T. K., 10.31392/MFAT-npu26_3.2020.04, Methods Funct. Anal. Topology 26 (2020), 227-240. (2020) MR4165154DOI10.31392/MFAT-npu26_3.2020.04
- Hua, D., Huang, Y., 10.4134/JKMS.j150499, J. Korean Math. Soc. 53 (2016), 1331-1345. (2016) Zbl1358.42026MR3570976DOI10.4134/JKMS.j150499
- Pawan, K. J., Om, P. A., Functional Analysis, New Age International Publisher, New Delhi (1995). (1995)
- Sadri, V., Rahimlou, G., Ahmadi, R., Zarghami, R., Generalized fusion frames in Hilbert spaces, Available at https://arxiv.org/abs/1806.03598v1 (2018), 16 pages. (2018)
- Sun, W., 10.1016/j.jmaa.2005.09.039, J. Math. Anal. Appl. 322 (2006), 437-452. (2006) Zbl1129.42017MR2239250DOI10.1016/j.jmaa.2005.09.039
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.