Dewetting dynamics of anisotropic particles: A level set numerical approach

Siddharth Gavhale; Karel Švadlenka

Applications of Mathematics (2022)

  • Volume: 67, Issue: 5, page 543-571
  • ISSN: 0862-7940

Abstract

top
We extend thresholding methods for numerical realization of mean curvature flow on obstacles to the anisotropic setting where interfacial energy depends on the orientation of the interface. This type of schemes treats the interface implicitly, which supports natural implementation of topology changes, such as merging and splitting, and makes the approach attractive for applications in material science. The main tool in the new scheme are convolution kernels developed in previous studies that approximate the given anisotropy in a nonlocal way. We provide a detailed report on the numerical properties of the proposed algorithm.

How to cite

top

Gavhale, Siddharth, and Švadlenka, Karel. "Dewetting dynamics of anisotropic particles: A level set numerical approach." Applications of Mathematics 67.5 (2022): 543-571. <http://eudml.org/doc/298482>.

@article{Gavhale2022,
abstract = {We extend thresholding methods for numerical realization of mean curvature flow on obstacles to the anisotropic setting where interfacial energy depends on the orientation of the interface. This type of schemes treats the interface implicitly, which supports natural implementation of topology changes, such as merging and splitting, and makes the approach attractive for applications in material science. The main tool in the new scheme are convolution kernels developed in previous studies that approximate the given anisotropy in a nonlocal way. We provide a detailed report on the numerical properties of the proposed algorithm.},
author = {Gavhale, Siddharth, Švadlenka, Karel},
journal = {Applications of Mathematics},
keywords = {interface evolution; anisotropic energy; weighted mean curvature; obstacle problem; thresholding method; convolution kernels; topology change; numerical analysis},
language = {eng},
number = {5},
pages = {543-571},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dewetting dynamics of anisotropic particles: A level set numerical approach},
url = {http://eudml.org/doc/298482},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Gavhale, Siddharth
AU - Švadlenka, Karel
TI - Dewetting dynamics of anisotropic particles: A level set numerical approach
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 5
SP - 543
EP - 571
AB - We extend thresholding methods for numerical realization of mean curvature flow on obstacles to the anisotropic setting where interfacial energy depends on the orientation of the interface. This type of schemes treats the interface implicitly, which supports natural implementation of topology changes, such as merging and splitting, and makes the approach attractive for applications in material science. The main tool in the new scheme are convolution kernels developed in previous studies that approximate the given anisotropy in a nonlocal way. We provide a detailed report on the numerical properties of the proposed algorithm.
LA - eng
KW - interface evolution; anisotropic energy; weighted mean curvature; obstacle problem; thresholding method; convolution kernels; topology change; numerical analysis
UR - http://eudml.org/doc/298482
ER -

References

top
  1. Bao, W., Jiang, W., Srolovitz, D. J., Wang, Y., 10.1137/16M1091599, SIAM J. Appl. Math. 77 (2017), 2093-2118. (2017) Zbl1386.74059MR3730550DOI10.1137/16M1091599
  2. Bertagnolli, M., Marchese, M., Jacucci, G., 10.1007/BF02648527, J. Thermal Spray Technology 4 (1995), 41-49. (1995) DOI10.1007/BF02648527
  3. Bonnetier, E., Bretin, E., Chambolle, A., 10.4171/IFB/272, Interface Free Bound. 14 (2012), 1-35. (2012) Zbl1254.35128MR2929124DOI10.4171/IFB/272
  4. Campinho, P., Behrndt, M., Ranft, J., Risler, T., Minc, N., Heisenberg, C.-P., 10.1038/ncb2869, Nature Cell Biology 15 (2013), 1405-1414. (2013) DOI10.1038/ncb2869
  5. Elsey, M., Esedoḡlu, S., 10.1090/mcom/3268, Math. Comput. 87 (2018), 1721-1756 9999DOI99999 10.1090/mcom/3268 . (2018) Zbl1397.65156MR3787390DOI10.1090/mcom/3268
  6. Esedoḡlu, S., Jacobs, M., 10.1137/16M1087552, SIAM J. Numer. Anal. 55 (2017), 2123-2150. (2017) Zbl1372.65253MR3693605DOI10.1137/16M1087552
  7. Esedoḡlu, S., Jacobs, M., Zhang, P., 10.1016/j.jcp.2017.02.023, J. Comput. Phys. 337 (2017), 62-83. (2017) Zbl1415.65278MR3623147DOI10.1016/j.jcp.2017.02.023
  8. Esedoḡlu, S., Otto, F., 10.1002/cpa.21527, Commun. Pure Appl. Math. 68 (2015), 808-864. (2015) Zbl1334.82072MR3333842DOI10.1002/cpa.21527
  9. Huang, J., Kim, F., Tao, A. R., Connor, S., Yang, P., 10.1038/nmat1517, Nature Materials 4 (2005), 896-900. (2005) DOI10.1038/nmat1517
  10. Ishii, H., Pires, G. E., Souganidis, P. E., 10.2969/jmsj/05120267, J. Math. Soc. Japan 51 (1999), 267-308. (1999) Zbl0935.53006MR1674750DOI10.2969/jmsj/05120267
  11. Jiang, W., Bao, W., Thompson, C. V., Srolovitz, D. J., 10.1016/j.actamat.2012.07.002, Acta Mater. 60 (2012), 5578-5592. (2012) DOI10.1016/j.actamat.2012.07.002
  12. Laux, T., Otto, F., 10.1007/s00526-016-1053-0, Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 129, 74 pages. (2016) Zbl1388.35121MR3556529DOI10.1007/s00526-016-1053-0
  13. Merriman, B., Bence, J. K., Osher, S. J., 10.1006/jcph.1994.1105, J. Comput. Phys. 112 (1994), 334-363. (1994) Zbl0805.65090MR1277282DOI10.1006/jcph.1994.1105
  14. Misiats, O., Yip, N. Kwan, 10.3934/dcds.2016076, Discrete Contin. Dyn. Syst. 36 (2016), 6379-6411. (2016) Zbl1353.65097MR3543592DOI10.3934/dcds.2016076
  15. Ruuth, S. J., Merriman, B., 10.1137/S003613999833397X, SIAM J. Appl. Math. 60 (2000), 868-890. (2000) Zbl0958.65021MR1740854DOI10.1137/S003613999833397X
  16. Ševčovič, D., Yazaki, S., 10.1007/s13160-011-0046-9, Japan J. Ind. Appl. Math. 28 (2011), 413-442. (2011) Zbl1291.35109MR2846183DOI10.1007/s13160-011-0046-9
  17. Thompson, C. V., 10.1146/annurev-matsci-070511-155048, Annual Review Materials Research 42 (2012), 399-434. (2012) DOI10.1146/annurev-matsci-070511-155048
  18. Wang, Y., Jiang, W., Bao, W., Srolovitz, D. J., 10.1103/PhysRevB.91.045303, Phys. Rev. B 91 (2015), Article ID 045303. (2015) DOI10.1103/PhysRevB.91.045303
  19. Winterbottom, W. L., 10.1016/0001-6160(67)90206-4, Acta Metallurgica 15 (1967), 303-310. (1967) DOI10.1016/0001-6160(67)90206-4
  20. Xu, X., Wang, D., Wang, X.-P., 10.1016/j.jcp.2016.11.008, J. Comput. Phys. 330 (2017), 510-528. (2017) Zbl1378.76087MR3581477DOI10.1016/j.jcp.2016.11.008
  21. Yagisita, H., 10.1007/s00526-005-0357-2, Calc. Var. Partial Differ. Equ. 26 (2006), 49-55. (2006) Zbl1116.53041MR2217482DOI10.1007/s00526-005-0357-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.