Uniformly convex spiral functions and uniformly spirallike functions associated with Pascal distribution series

Gangadharan Murugusundaramoorthy; Basem Aref Frasin; Tariq Al-Hawary

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 3, page 407-417
  • ISSN: 0862-7959

Abstract

top
The aim of this paper is to find the necessary and sufficient conditions and inclusion relations for Pascal distribution series to be in the classes 𝒮𝒫 p ( α , β ) and 𝒰𝒞𝒱 p ( α , β ) of uniformly spirallike functions. Further, we consider an integral operator related to Pascal distribution series. Several corollaries and consequences of the main results are also considered.

How to cite

top

Murugusundaramoorthy, Gangadharan, Frasin, Basem Aref, and Al-Hawary, Tariq. "Uniformly convex spiral functions and uniformly spirallike functions associated with Pascal distribution series." Mathematica Bohemica 147.3 (2022): 407-417. <http://eudml.org/doc/298495>.

@article{Murugusundaramoorthy2022,
abstract = {The aim of this paper is to find the necessary and sufficient conditions and inclusion relations for Pascal distribution series to be in the classes $\mathcal \{SP\}_\{p\}(\alpha ,\beta )$ and $\mathcal \{UCV\}_\{p\}(\alpha ,\beta )$ of uniformly spirallike functions. Further, we consider an integral operator related to Pascal distribution series. Several corollaries and consequences of the main results are also considered.},
author = {Murugusundaramoorthy, Gangadharan, Frasin, Basem Aref, Al-Hawary, Tariq},
journal = {Mathematica Bohemica},
keywords = {analytic function; Hadamard product; uniformly spirallike function; Pascal distribution series},
language = {eng},
number = {3},
pages = {407-417},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uniformly convex spiral functions and uniformly spirallike functions associated with Pascal distribution series},
url = {http://eudml.org/doc/298495},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Murugusundaramoorthy, Gangadharan
AU - Frasin, Basem Aref
AU - Al-Hawary, Tariq
TI - Uniformly convex spiral functions and uniformly spirallike functions associated with Pascal distribution series
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 3
SP - 407
EP - 417
AB - The aim of this paper is to find the necessary and sufficient conditions and inclusion relations for Pascal distribution series to be in the classes $\mathcal {SP}_{p}(\alpha ,\beta )$ and $\mathcal {UCV}_{p}(\alpha ,\beta )$ of uniformly spirallike functions. Further, we consider an integral operator related to Pascal distribution series. Several corollaries and consequences of the main results are also considered.
LA - eng
KW - analytic function; Hadamard product; uniformly spirallike function; Pascal distribution series
UR - http://eudml.org/doc/298495
ER -

References

top
  1. Al-Hawary, T., Frasin, B. A., Uniformly analytic functions with varying arguments, An. Univ. Oradea, Fasc. Mat. 23 (2016), 37-44. (2016) Zbl1349.30023MR3496011
  2. Cho, N. E., Woo, S. Y., Owa, S., Uniform convexity properties for hypergeometric functions, Fract. Calc. Appl. Anal. 5 (2002), 303-313. (2002) Zbl1028.30013MR1922272
  3. Dixit, K. K., Pal, S. K., On a class of univalent functions related to complex order, Indian J. Pure Appl. Math. 26 (1995), 889-896. (1995) Zbl0835.30006MR1347537
  4. El-Ashwah, R. M., Kota, W. Y., 10.17114/j.aua.2017.51.08, Acta Univ. Apulensis, Math. Inform. 51 (2017), 89-103. (2017) Zbl1413.30053MR3711116DOI10.17114/j.aua.2017.51.08
  5. El-Deeb, S. M., Bulboacă, T., 10.3390/math7121185, Mathematics 7 (2019), 17 pages, Article ID 1185. (2019) DOI10.3390/math7121185
  6. El-Deeb, S. M., Bulboacă, T., Dziok, J., 10.5666/KMJ.2019.59.2.301, Kyungpook Math. J. 59 (2019), 301-314. (2019) Zbl1435.30045MR3987710DOI10.5666/KMJ.2019.59.2.301
  7. Frasin, B. A., 10.5556/j.tkjm.36.2005.117, Tamkang J. Math. 36 (2005), 243-254. (2005) Zbl1086.30012MR2182243DOI10.5556/j.tkjm.36.2005.117
  8. Frasin, B. A., Quasi-Hadamard product of certain classes of uniformly analytic functions, Gen. Math. 16 (2008), 29-35. (2008) Zbl1240.30047MR2439231
  9. Frasin, B. A., 10.2478/ausm-2019-0007, Acta Univ. Sapientiae, Math. 11 (2019), 78-86. (2019) Zbl1432.30010MR3995739DOI10.2478/ausm-2019-0007
  10. Frasin, B. A., Two subclasses of analytic functions associated with Poisson distribution, Turkish J. Ineq. 4 (2020), 25-30. (2020) 
  11. Frasin, B. A., Aldawish, I., 10.1155/2019/1329462, J. Funct. Spaces 2019 (2019), Article ID 1329462, 6 pages. (2019) Zbl1431.30010MR3998948DOI10.1155/2019/1329462
  12. Frasin, B. A., Al-Hawary, T., Yousef, F., 10.1007/s13370-018-0638-5, Afr. Mat. 30 (2019), 223-230. (2019) Zbl1438.30042MR3927324DOI10.1007/s13370-018-0638-5
  13. Frasin, B. A., Aydoğan, S. M., 10.1007/s13370-020-00813-1, Afr. Mat. 32 (2021), 105-113. (2021) Zbl07363570MR4222458DOI10.1007/s13370-020-00813-1
  14. Frasin, B. A., Gharaibeh, M. M., 10.1007/s13370-020-00788-z, Afr. Mat. 31 (2020), 1167-1173. (2020) Zbl1463.30053MR4154545DOI10.1007/s13370-020-00788-z
  15. Goodman, A. W., 10.4064/ap-56-1-87-92, Ann. Pol. Math. 56 (1991), 87-92. (1991) Zbl0744.30010MR1145573DOI10.4064/ap-56-1-87-92
  16. Goodman, A. W., 10.1016/0022-247X(91)90006-L, J. Math. Anal. Appl. 155 (1991), 364-370. (1991) Zbl0726.30013MR1097287DOI10.1016/0022-247X(91)90006-L
  17. Kanas, S., Wiśniowska, A., 10.1016/S0377-0427(99)00018-7, J. Comput. Appl. Math. 105 (1999), 327-336. (1999) Zbl0944.30008MR1690599DOI10.1016/S0377-0427(99)00018-7
  18. Kanas, S., Wiśniowska, A., Conic domains and starlike functions, Rev. Roum. Math. Pures Appl. 45 (2000), 647-657. (2000) Zbl0990.30010MR1836295
  19. Merkes, E. P., Scott, W. T., 10.1090/S0002-9939-1961-0143950-1, Proc. Am. Math. Soc. 12 (1961), 885-888. (1961) Zbl0102.06502MR143950DOI10.1090/S0002-9939-1961-0143950-1
  20. Murugusundaramoorthy, G., 10.1007/s13370-017-0520-x, Afr. Mat. 28 (2017), 1357-1366. (2017) Zbl1381.30015MR3714601DOI10.1007/s13370-017-0520-x
  21. Murugusundaramoorthy, G., Vijaya, K., Porwal, S., 10.15672/HJMS.20164513110, Hacet. J. Math. Stat. 45 (2016), 1101-1107. (2016) Zbl1359.30022MR3585439DOI10.15672/HJMS.20164513110
  22. Porwal, S., Mapping properties of generalized Bessel functions on some subclasses of univalent functions, An. Univ. Oradea, Fasc. Mat. 20 (2013), 51-60. (2013) Zbl1313.30070MR3154762
  23. Porwal, S., 10.1155/2014/984135, J. Complex Anal. 2014 (2014), Article ID 984135, 3 pages. (2014) Zbl1310.30017MR3173344DOI10.1155/2014/984135
  24. Porwal, S., Kumar, M., 10.1007/s13370-016-0398-z, Afr. Mat. 27 (2016), 1021-1027. (2016) Zbl1352.30014MR3536083DOI10.1007/s13370-016-0398-z
  25. Ravichandran, V., Selvaraj, C., Rajagopal, R., On uniformly convex spiral functions and uniformly spirallike functions, Soochow J. Math. 29 (2003), 392-405. (2003) Zbl1047.30007MR2021539
  26. nning, F. Rø, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 45 (1991), 117-122. (1991) Zbl0769.30011MR1322145
  27. nning, F. Rø, 10.1090/S0002-9939-1993-1128729-7, Proc. Am. Math. Soc. 118 (1993), 189-196. (1993) Zbl0805.30012MR1128729DOI10.1090/S0002-9939-1993-1128729-7
  28. Selvaraj, C., Geetha, R., On subclasses of uniformly convex spirallike functions and corresponding class of spirallike functions, Int. J. Contemp. Math. Sci. 5 (2010), 1845-1854. (2010) Zbl1218.30049MR2733653
  29. Silverman, H., 10.1006/jmaa.1993.1044, J. Math. Anal. Appl. 172 (1993), 574-581. (1993) Zbl0774.30015MR1201006DOI10.1006/jmaa.1993.1044
  30. Srivastava, H. M., Murugusundaramoorthy, G., Sivasubramanian, S., 10.1080/10652460701391324, Integral Transforms Spec. Funct. 18 (2007), 511-520. (2007) Zbl1198.30013MR2348596DOI10.1080/10652460701391324

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.