On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity

Bedřich Sousedík; Howard C. Elman; Kookjin Lee; Randy Price

Applications of Mathematics (2022)

  • Volume: 67, Issue: 6, page 727-749
  • ISSN: 0862-7940

Abstract

top
We study linear stability of solutions to the Navier-Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates based on generalized polynomial chaos, Gaussian process regression and a shallow neural network. The results of linear stability analysis assessment obtained by the surrogates are compared to that of Monte Carlo simulation using a set of numerical experiments.

How to cite

top

Sousedík, Bedřich, et al. "On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity." Applications of Mathematics 67.6 (2022): 727-749. <http://eudml.org/doc/298506>.

@article{Sousedík2022,
abstract = {We study linear stability of solutions to the Navier-Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates based on generalized polynomial chaos, Gaussian process regression and a shallow neural network. The results of linear stability analysis assessment obtained by the surrogates are compared to that of Monte Carlo simulation using a set of numerical experiments.},
author = {Sousedík, Bedřich, Elman, Howard C., Lee, Kookjin, Price, Randy},
journal = {Applications of Mathematics},
keywords = {linear stability; Navier-Stokes equations; generalized polynomial chaos; stochastic collocation; stochastic Galerkin method; Gaussian process regression; shallow neural network},
language = {eng},
number = {6},
pages = {727-749},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity},
url = {http://eudml.org/doc/298506},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Sousedík, Bedřich
AU - Elman, Howard C.
AU - Lee, Kookjin
AU - Price, Randy
TI - On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 6
SP - 727
EP - 749
AB - We study linear stability of solutions to the Navier-Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates based on generalized polynomial chaos, Gaussian process regression and a shallow neural network. The results of linear stability analysis assessment obtained by the surrogates are compared to that of Monte Carlo simulation using a set of numerical experiments.
LA - eng
KW - linear stability; Navier-Stokes equations; generalized polynomial chaos; stochastic collocation; stochastic Galerkin method; Gaussian process regression; shallow neural network
UR - http://eudml.org/doc/298506
ER -

References

top
  1. Åkervik, E., Brandt, L., Henningson, D. S., pffner, J. Hœ, Marxen, O., Schlatter, P., 10.1063/1.2211705, Phys. Fluids 18 (2006), Article ID 068102. (2006) DOI10.1063/1.2211705
  2. Andreev, R., Schwab, C., 10.1007/978-3-642-22061-6_7, Numerical Analysis of Multiscale Problems Lecture Notes in Computational Science and Engineering 83. Springer, Berlin (2012), 203-241. (2012) Zbl1248.65116MR3050915DOI10.1007/978-3-642-22061-6_7
  3. Babuška, I., Nobile, F., Tempone, R., 10.1137/100786356, SIAM Rev. 52 (2010), 317-355. (2010) Zbl1226.65004MR2646806DOI10.1137/100786356
  4. Benner, P., Onwunta, A., Stoll, M., 10.1515/cmam-2018-0030, Comput. Methods Appl. Math. 19 (2019), 5-22. (2019) Zbl1420.65043MR3898202DOI10.1515/cmam-2018-0030
  5. Cliffe, K. A., Garratt, T. J., Spence, A., 10.1137/S0895479892233230, SIAM J. Matrix Anal. Appl. 15 (1994), 1310-1318. (1994) Zbl0807.65030MR1293919DOI10.1137/S0895479892233230
  6. Cliffe, K. A., Spence, A., Tavener, S. J., 10.1017/S0962492900000398, Acta Numerica 9 (2000), 39-131. (2000) Zbl1005.65138MR1883627DOI10.1017/S0962492900000398
  7. Foresee, F. Dan, Hagan, M. T., 10.1109/ICNN.1997.614194, Proceedings of International Conference on Neural Networks (ICNN'97). Vol. 3 IEEE, Piscataway (1997), 1930-1935. (1997) DOI10.1109/ICNN.1997.614194
  8. Elman, H. C., Meerbergen, K., Spence, A., Wu, M., 10.1137/110827600, SIAM J. Sci. Comput. 34 (2012), A1584--A1606. (2012) Zbl1247.65047MR2970265DOI10.1137/110827600
  9. Elman, H. C., Ramage, A., Silvester, D. J., 10.1137/120891393, SIAM Rev. 56 (2014), 261-273. (2014) Zbl1426.76645MR3201182DOI10.1137/120891393
  10. Elman, H. C., Silvester, D. J., 10.1137/17M1117689, SIAM J. Sci. Comput. 40 (2018), A2667--A2693. (2018) Zbl1398.65176MR3846294DOI10.1137/17M1117689
  11. Elman, H. C., Silvester, D. J., Wathen, A. J., 10.1093/acprof:oso/9780199678792.001.0001, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2014). (2014) Zbl1304.76002MR3235759DOI10.1093/acprof:oso/9780199678792.001.0001
  12. Erickson, C. B., Ankenman, B. E., Sanchez, S. M., 10.1016/j.ejor.2017.10.002, Eur. J. Oper. Res. 266 (2018), 179-192. (2018) Zbl1403.62006MR3736988DOI10.1016/j.ejor.2017.10.002
  13. Gerstner, T., Griebel, M., 10.1023/A:1019129717644, Numer. Algorithms 18 (1998), 209-232. (1998) Zbl0921.65022MR1669959DOI10.1023/A:1019129717644
  14. Ghanem, R. G., 10.1115/1.2791806, J. Appl. Mech. 66 (1999), 964-973. (1999) DOI10.1115/1.2791806
  15. Ghanem, R. G., Spanos, P. D., 10.1007/978-1-4612-3094-6, Springer, New York (1991). (1991) Zbl0722.73080MR1083354DOI10.1007/978-1-4612-3094-6
  16. Girault, V., Raviart, P.-A., 10.1007/978-3-642-61623-5, Springer Series in Computational Mathematics 5. Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383DOI10.1007/978-3-642-61623-5
  17. Govaerts, W. J. F., 10.1137/1.9780898719543, SIAM, Philadelphia (2000). (2000) Zbl0935.37054MR1736704DOI10.1137/1.9780898719543
  18. Lee, K., Elman, H. C., Sousedík, B., 10.1137/17M1151912, SIAM/ASA J. Uncertain. Quantif. 7 (2019), 1275-1300. (2019) Zbl1442.35568MR4025775DOI10.1137/17M1151912
  19. Lee, K., Sousedík, B., 10.1137/18M1176026, SIAM/ASA J. Uncertain. Quantif. 6 (2018), 1744-1776. (2018) Zbl1405.65052MR3892437DOI10.1137/18M1176026
  20. Maître, O. P. Le, Knio, O. M., 10.1007/978-90-481-3520-2, Scientific Computation. Springer, Dordrecht (2010). (2010) Zbl1193.76003MR2605529DOI10.1007/978-90-481-3520-2
  21. Loiseau, J. C., Bucci, M. A., Cherubini, S., Robinet, J.-C., 10.1007/978-3-319-91494-7_2, Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics Computational Methods in Applied Sciences 50. Springer, Cham (2019), 33-73. (2019) MR3822594DOI10.1007/978-3-319-91494-7_2
  22. MacKay, D. J. C., 10.1162/neco.1992.4.3.415, Neural Comput. 4 (1992), 415-447. (1992) DOI10.1162/neco.1992.4.3.415
  23. Matthies, H. G., Keese, A., 10.1016/j.cma.2004.05.027, Comput. Methods Appl. Mech. Eng. 194 (2005), 1295-1331. (2005) Zbl1088.65002MR2121216DOI10.1016/j.cma.2004.05.027
  24. Novak, E., Ritter, K., 10.1007/s002110050231, Numer. Math. 75 (1996), 79-97. (1996) Zbl0883.65016MR1417864DOI10.1007/s002110050231
  25. O'Hagan, A., Polynomial chaos: A tutorial and critique from a statistician's perspective, Available at http://tonyohagan.co.uk/academic/pdf/Polynomial-chaos.pdf (2013). (2013) 
  26. Owen, N. E., Challenor, P., Menon, P. P., Bennani, S., 10.1137/15M1046812, SIAM/ASA J. Uncertain. Quantif. 5 (2017), 403-435. (2017) Zbl06736509MR3639591DOI10.1137/15M1046812
  27. Peng, G. C. Y., Alber, M., al., A. Buganza Tepole et, 10.1007/s11831-020-09405-5, Arch. Comput. Methods Eng. 28 (2021), 1017-1037. (2021) MR4246233DOI10.1007/s11831-020-09405-5
  28. Powell, C. E., Silvester, D. J., 10.1137/120870578, SIAM J. Sci. Comput. 34 (2012), A2482--A2506. (2012) Zbl1256.35216MR3023713DOI10.1137/120870578
  29. Rasmussen, C. E., Williams, C. K. I., 10.7551/mitpress/3206.001.0001, Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006). (2006) Zbl1177.68165MR2514435DOI10.7551/mitpress/3206.001.0001
  30. Schmid, P. J., Henningson, D. S., 10.1007/978-1-4613-0185-1, Applied Mathematical Sciences 142. Springer, New York (2001). (2001) Zbl0966.76003MR1801992DOI10.1007/978-1-4613-0185-1
  31. Sirignano, J., Spiliopoulos, K., 10.1016/j.jcp.2018.08.029, J. Comput. Phys. 375 (2018), 1339-1364. (2018) Zbl1416.65394MR3874585DOI10.1016/j.jcp.2018.08.029
  32. Sousedík, B., Elman, H. C., 10.1016/j.jcp.2016.04.013, J. Comput. Phys. 316 (2016), 435-452. (2016) Zbl1349.76268MR3494362DOI10.1016/j.jcp.2016.04.013
  33. Sousedík, B., Lee, K., Stochastic Galerkin methods for linear stability analysis of systems with parametric uncertainty, Avaliable at https://arxiv.org/abs/2202.12485 (2022), 27 pages. (2022) MR4490318
  34. Stein, M. L., 10.1007/978-1-4612-1494-6, Springer Series in Statistics. Springer, New York (1999). (1999) Zbl0924.62100MR1697409DOI10.1007/978-1-4612-1494-6
  35. Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., Alkon, D. L., 10.1007/BF00332914, Biol. Cybern. 59 (1988), 257-263. (1988) DOI10.1007/BF00332914
  36. Xiu, D., 10.1515/9781400835348, Princeton University Press, Princeton (2010). (2010) Zbl1210.65002MR2723020DOI10.1515/9781400835348
  37. Xiu, D., Karniadakis, G. E., 10.1137/S1064827501387826, SIAM J. Sci. Comput. 24 (2002), 619-644. (2002) Zbl1014.65004MR1951058DOI10.1137/S1064827501387826
  38. Yan, L., Duan, X., Liu, B., Xu, J., Gaussian processes and polynomial chaos expansion for regression problem: Linkage via the RKHS and comparison via the KL divergence, Entropy 20 (2018), Article ID 191, 22 pages 9999DOI99999 10.3390/e20030191 . (2018) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.