On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity
Bedřich Sousedík; Howard C. Elman; Kookjin Lee; Randy Price
Applications of Mathematics (2022)
- Volume: 67, Issue: 6, page 727-749
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSousedík, Bedřich, et al. "On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity." Applications of Mathematics 67.6 (2022): 727-749. <http://eudml.org/doc/298506>.
@article{Sousedík2022,
abstract = {We study linear stability of solutions to the Navier-Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates based on generalized polynomial chaos, Gaussian process regression and a shallow neural network. The results of linear stability analysis assessment obtained by the surrogates are compared to that of Monte Carlo simulation using a set of numerical experiments.},
author = {Sousedík, Bedřich, Elman, Howard C., Lee, Kookjin, Price, Randy},
journal = {Applications of Mathematics},
keywords = {linear stability; Navier-Stokes equations; generalized polynomial chaos; stochastic collocation; stochastic Galerkin method; Gaussian process regression; shallow neural network},
language = {eng},
number = {6},
pages = {727-749},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity},
url = {http://eudml.org/doc/298506},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Sousedík, Bedřich
AU - Elman, Howard C.
AU - Lee, Kookjin
AU - Price, Randy
TI - On surrogate learning for linear stability assessment of Navier-Stokes equations with stochastic viscosity
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 6
SP - 727
EP - 749
AB - We study linear stability of solutions to the Navier-Stokes equations with stochastic viscosity. Specifically, we assume that the viscosity is given in the form of a stochastic expansion. Stability analysis requires a solution of the steady-state Navier-Stokes equation and then leads to a generalized eigenvalue problem, from which we wish to characterize the real part of the rightmost eigenvalue. While this can be achieved by Monte Carlo simulation, due to its computational cost we study three surrogates based on generalized polynomial chaos, Gaussian process regression and a shallow neural network. The results of linear stability analysis assessment obtained by the surrogates are compared to that of Monte Carlo simulation using a set of numerical experiments.
LA - eng
KW - linear stability; Navier-Stokes equations; generalized polynomial chaos; stochastic collocation; stochastic Galerkin method; Gaussian process regression; shallow neural network
UR - http://eudml.org/doc/298506
ER -
References
top- Åkervik, E., Brandt, L., Henningson, D. S., pffner, J. Hœ, Marxen, O., Schlatter, P., 10.1063/1.2211705, Phys. Fluids 18 (2006), Article ID 068102. (2006) DOI10.1063/1.2211705
- Andreev, R., Schwab, C., 10.1007/978-3-642-22061-6_7, Numerical Analysis of Multiscale Problems Lecture Notes in Computational Science and Engineering 83. Springer, Berlin (2012), 203-241. (2012) Zbl1248.65116MR3050915DOI10.1007/978-3-642-22061-6_7
- Babuška, I., Nobile, F., Tempone, R., 10.1137/100786356, SIAM Rev. 52 (2010), 317-355. (2010) Zbl1226.65004MR2646806DOI10.1137/100786356
- Benner, P., Onwunta, A., Stoll, M., 10.1515/cmam-2018-0030, Comput. Methods Appl. Math. 19 (2019), 5-22. (2019) Zbl1420.65043MR3898202DOI10.1515/cmam-2018-0030
- Cliffe, K. A., Garratt, T. J., Spence, A., 10.1137/S0895479892233230, SIAM J. Matrix Anal. Appl. 15 (1994), 1310-1318. (1994) Zbl0807.65030MR1293919DOI10.1137/S0895479892233230
- Cliffe, K. A., Spence, A., Tavener, S. J., 10.1017/S0962492900000398, Acta Numerica 9 (2000), 39-131. (2000) Zbl1005.65138MR1883627DOI10.1017/S0962492900000398
- Foresee, F. Dan, Hagan, M. T., 10.1109/ICNN.1997.614194, Proceedings of International Conference on Neural Networks (ICNN'97). Vol. 3 IEEE, Piscataway (1997), 1930-1935. (1997) DOI10.1109/ICNN.1997.614194
- Elman, H. C., Meerbergen, K., Spence, A., Wu, M., 10.1137/110827600, SIAM J. Sci. Comput. 34 (2012), A1584--A1606. (2012) Zbl1247.65047MR2970265DOI10.1137/110827600
- Elman, H. C., Ramage, A., Silvester, D. J., 10.1137/120891393, SIAM Rev. 56 (2014), 261-273. (2014) Zbl1426.76645MR3201182DOI10.1137/120891393
- Elman, H. C., Silvester, D. J., 10.1137/17M1117689, SIAM J. Sci. Comput. 40 (2018), A2667--A2693. (2018) Zbl1398.65176MR3846294DOI10.1137/17M1117689
- Elman, H. C., Silvester, D. J., Wathen, A. J., 10.1093/acprof:oso/9780199678792.001.0001, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2014). (2014) Zbl1304.76002MR3235759DOI10.1093/acprof:oso/9780199678792.001.0001
- Erickson, C. B., Ankenman, B. E., Sanchez, S. M., 10.1016/j.ejor.2017.10.002, Eur. J. Oper. Res. 266 (2018), 179-192. (2018) Zbl1403.62006MR3736988DOI10.1016/j.ejor.2017.10.002
- Gerstner, T., Griebel, M., 10.1023/A:1019129717644, Numer. Algorithms 18 (1998), 209-232. (1998) Zbl0921.65022MR1669959DOI10.1023/A:1019129717644
- Ghanem, R. G., 10.1115/1.2791806, J. Appl. Mech. 66 (1999), 964-973. (1999) DOI10.1115/1.2791806
- Ghanem, R. G., Spanos, P. D., 10.1007/978-1-4612-3094-6, Springer, New York (1991). (1991) Zbl0722.73080MR1083354DOI10.1007/978-1-4612-3094-6
- Girault, V., Raviart, P.-A., 10.1007/978-3-642-61623-5, Springer Series in Computational Mathematics 5. Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383DOI10.1007/978-3-642-61623-5
- Govaerts, W. J. F., 10.1137/1.9780898719543, SIAM, Philadelphia (2000). (2000) Zbl0935.37054MR1736704DOI10.1137/1.9780898719543
- Lee, K., Elman, H. C., Sousedík, B., 10.1137/17M1151912, SIAM/ASA J. Uncertain. Quantif. 7 (2019), 1275-1300. (2019) Zbl1442.35568MR4025775DOI10.1137/17M1151912
- Lee, K., Sousedík, B., 10.1137/18M1176026, SIAM/ASA J. Uncertain. Quantif. 6 (2018), 1744-1776. (2018) Zbl1405.65052MR3892437DOI10.1137/18M1176026
- Maître, O. P. Le, Knio, O. M., 10.1007/978-90-481-3520-2, Scientific Computation. Springer, Dordrecht (2010). (2010) Zbl1193.76003MR2605529DOI10.1007/978-90-481-3520-2
- Loiseau, J. C., Bucci, M. A., Cherubini, S., Robinet, J.-C., 10.1007/978-3-319-91494-7_2, Computational Modelling of Bifurcations and Instabilities in Fluid Dynamics Computational Methods in Applied Sciences 50. Springer, Cham (2019), 33-73. (2019) MR3822594DOI10.1007/978-3-319-91494-7_2
- MacKay, D. J. C., 10.1162/neco.1992.4.3.415, Neural Comput. 4 (1992), 415-447. (1992) DOI10.1162/neco.1992.4.3.415
- Matthies, H. G., Keese, A., 10.1016/j.cma.2004.05.027, Comput. Methods Appl. Mech. Eng. 194 (2005), 1295-1331. (2005) Zbl1088.65002MR2121216DOI10.1016/j.cma.2004.05.027
- Novak, E., Ritter, K., 10.1007/s002110050231, Numer. Math. 75 (1996), 79-97. (1996) Zbl0883.65016MR1417864DOI10.1007/s002110050231
- O'Hagan, A., Polynomial chaos: A tutorial and critique from a statistician's perspective, Available at http://tonyohagan.co.uk/academic/pdf/Polynomial-chaos.pdf (2013). (2013)
- Owen, N. E., Challenor, P., Menon, P. P., Bennani, S., 10.1137/15M1046812, SIAM/ASA J. Uncertain. Quantif. 5 (2017), 403-435. (2017) Zbl06736509MR3639591DOI10.1137/15M1046812
- Peng, G. C. Y., Alber, M., al., A. Buganza Tepole et, 10.1007/s11831-020-09405-5, Arch. Comput. Methods Eng. 28 (2021), 1017-1037. (2021) MR4246233DOI10.1007/s11831-020-09405-5
- Powell, C. E., Silvester, D. J., 10.1137/120870578, SIAM J. Sci. Comput. 34 (2012), A2482--A2506. (2012) Zbl1256.35216MR3023713DOI10.1137/120870578
- Rasmussen, C. E., Williams, C. K. I., 10.7551/mitpress/3206.001.0001, Adaptive Computation and Machine Learning. MIT Press, Cambridge (2006). (2006) Zbl1177.68165MR2514435DOI10.7551/mitpress/3206.001.0001
- Schmid, P. J., Henningson, D. S., 10.1007/978-1-4613-0185-1, Applied Mathematical Sciences 142. Springer, New York (2001). (2001) Zbl0966.76003MR1801992DOI10.1007/978-1-4613-0185-1
- Sirignano, J., Spiliopoulos, K., 10.1016/j.jcp.2018.08.029, J. Comput. Phys. 375 (2018), 1339-1364. (2018) Zbl1416.65394MR3874585DOI10.1016/j.jcp.2018.08.029
- Sousedík, B., Elman, H. C., 10.1016/j.jcp.2016.04.013, J. Comput. Phys. 316 (2016), 435-452. (2016) Zbl1349.76268MR3494362DOI10.1016/j.jcp.2016.04.013
- Sousedík, B., Lee, K., Stochastic Galerkin methods for linear stability analysis of systems with parametric uncertainty, Avaliable at https://arxiv.org/abs/2202.12485 (2022), 27 pages. (2022) MR4490318
- Stein, M. L., 10.1007/978-1-4612-1494-6, Springer Series in Statistics. Springer, New York (1999). (1999) Zbl0924.62100MR1697409DOI10.1007/978-1-4612-1494-6
- Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., Alkon, D. L., 10.1007/BF00332914, Biol. Cybern. 59 (1988), 257-263. (1988) DOI10.1007/BF00332914
- Xiu, D., 10.1515/9781400835348, Princeton University Press, Princeton (2010). (2010) Zbl1210.65002MR2723020DOI10.1515/9781400835348
- Xiu, D., Karniadakis, G. E., 10.1137/S1064827501387826, SIAM J. Sci. Comput. 24 (2002), 619-644. (2002) Zbl1014.65004MR1951058DOI10.1137/S1064827501387826
- Yan, L., Duan, X., Liu, B., Xu, J., Gaussian processes and polynomial chaos expansion for regression problem: Linkage via the RKHS and comparison via the KL divergence, Entropy 20 (2018), Article ID 191, 22 pages 9999DOI99999 10.3390/e20030191 . (2018)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.