Selectors of discrete coarse spaces

Igor Protasov

Commentationes Mathematicae Universitatis Carolinae (2022)

  • Volume: 62 63, Issue: 2, page 261-267
  • ISSN: 0010-2628

Abstract

top
Given a coarse space ( X , ) with the bornology of bounded subsets, we extend the coarse structure from X × X to the natural coarse structure on ( { } ) × ( { } ) and say that a macro-uniform mapping f : ( { } ) X (or f : [ X ] 2 X ) is a selector (or 2-selector) of ( X , ) if f ( A ) A for each A { } ( A [ X ] 2 , respectively). We prove that a discrete coarse space ( X , ) admits a selector if and only if ( X , ) admits a 2-selector if and only if there exists a linear order “ " on X such that the family of intervals { [ a , b ] : a , b X , a b } is a base for the bornology .

How to cite

top

Protasov, Igor. "Selectors of discrete coarse spaces." Commentationes Mathematicae Universitatis Carolinae 62 63.2 (2022): 261-267. <http://eudml.org/doc/298524>.

@article{Protasov2022,
abstract = {Given a coarse space $(X, \mathcal \{E\})$ with the bornology $\mathcal \{B\}$ of bounded subsets, we extend the coarse structure $\mathcal \{E\}$ from $X\times X$ to the natural coarse structure on $(\mathcal \{B\} \backslash \lbrace \emptyset \rbrace ) \times (\mathcal \{B\} \backslash \lbrace \emptyset \rbrace )$ and say that a macro-uniform mapping $f\colon (\mathcal \{B\} \backslash \lbrace \emptyset \rbrace )\rightarrow X$ (or $f\colon [ X]^2 \rightarrow X$) is a selector (or 2-selector) of $(X, \mathcal \{E\})$ if $f(A)\in A$ for each $A\in \mathcal \{B\}\setminus \lbrace \emptyset \rbrace $ ($A \in [X]^2 $, respectively). We prove that a discrete coarse space $(X, \mathcal \{E\})$ admits a selector if and only if $(X, \mathcal \{E\})$ admits a 2-selector if and only if there exists a linear order “$\le $" on $X$ such that the family of intervals $\lbrace [a, b]\colon a,b\in X, a\le b \rbrace $ is a base for the bornology $\mathcal \{B\}$.},
author = {Protasov, Igor},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {bornology; coarse space; selector},
language = {eng},
number = {2},
pages = {261-267},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Selectors of discrete coarse spaces},
url = {http://eudml.org/doc/298524},
volume = {62 63},
year = {2022},
}

TY - JOUR
AU - Protasov, Igor
TI - Selectors of discrete coarse spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 2
SP - 261
EP - 267
AB - Given a coarse space $(X, \mathcal {E})$ with the bornology $\mathcal {B}$ of bounded subsets, we extend the coarse structure $\mathcal {E}$ from $X\times X$ to the natural coarse structure on $(\mathcal {B} \backslash \lbrace \emptyset \rbrace ) \times (\mathcal {B} \backslash \lbrace \emptyset \rbrace )$ and say that a macro-uniform mapping $f\colon (\mathcal {B} \backslash \lbrace \emptyset \rbrace )\rightarrow X$ (or $f\colon [ X]^2 \rightarrow X$) is a selector (or 2-selector) of $(X, \mathcal {E})$ if $f(A)\in A$ for each $A\in \mathcal {B}\setminus \lbrace \emptyset \rbrace $ ($A \in [X]^2 $, respectively). We prove that a discrete coarse space $(X, \mathcal {E})$ admits a selector if and only if $(X, \mathcal {E})$ admits a 2-selector if and only if there exists a linear order “$\le $" on $X$ such that the family of intervals $\lbrace [a, b]\colon a,b\in X, a\le b \rbrace $ is a base for the bornology $\mathcal {B}$.
LA - eng
KW - bornology; coarse space; selector
UR - http://eudml.org/doc/298524
ER -

References

top
  1. Artico G., Marconi U., Pelant J., Rotter L., Tkachenko M., Selections and suborderability, Fund. Math. 175 (2002), no. 1, 1–33. Zbl1019.54014MR1971236
  2. Dikranjan D., Protasov I., Protasova K., Zava N., 10.4995/agt.2019.11645, Appl. Gen. Topology 2 (2019), 431–447. MR4019581DOI10.4995/agt.2019.11645
  3. Dikranjan D., Protasov I., Zava N., 10.1016/j.topol.2019.05.019, Topology Appl. 263 (2019), 172–198. MR3961119DOI10.1016/j.topol.2019.05.019
  4. Engelking R., Health R. W., Michael E., 10.1007/BF01425452, Invent. Math. 6 (1968), 150–158. MR0244959DOI10.1007/BF01425452
  5. de la Harpe P., Topics in Geometric Group Theory, Chicago Lectures in Mathematics, The University Chicago Press, Chicago, 2000. MR1786869
  6. van Mill J., Pelant J., Pol R., 10.4064/fm-149-2-127-141, Fund. Math. 149 (1996), no. 2, 127–141. MR1376668DOI10.4064/fm-149-2-127-141
  7. van Mill J., Wattel E., 10.1090/S0002-9939-1981-0627702-4, Proc. Amer. Math. Soc. 83 (1981), no. 3, 601–605. MR0627702DOI10.1090/S0002-9939-1981-0627702-4
  8. Protasov I., Banakh T., Ball Structures and Colorings of Graphs and Groups, Mathematical Studies Monograph Series, 11, VNTL Publishers, L'viv, 2003. Zbl1147.05033MR2392704
  9. Protasov I., Protasova K., 10.1007/s40879-018-0236-y, Eur. J. Math. 4 (2018), no. 4, 1515–1520. MR3866708DOI10.1007/s40879-018-0236-y
  10. Protasov I., Protasova K., 10.1007/s40879-020-00440-x, Eur. J. Math. 7 (2021), no. 3, 1274–1279. MR4289511DOI10.1007/s40879-020-00440-x
  11. Protasov I., Zarichnyi M., General Asymptology, Mathematical Studies Monograph Series, 12, VNTL Publishers, L'viv, 2007. MR2406623
  12. Przesławski K., Yost D., 10.1307/mmj/1029003885, Michigan Math. J. 36 (1989), no. 1, 113–134. MR0989940DOI10.1307/mmj/1029003885
  13. Roe J., 10.1090/ulect/031/10, University Lecture Series, 31, American Mathematical Society, Providence, 2003. Zbl1042.53027MR2007488DOI10.1090/ulect/031/10

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.