Selectors of discrete coarse spaces
Commentationes Mathematicae Universitatis Carolinae (2022)
- Volume: 62 63, Issue: 2, page 261-267
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topProtasov, Igor. "Selectors of discrete coarse spaces." Commentationes Mathematicae Universitatis Carolinae 62 63.2 (2022): 261-267. <http://eudml.org/doc/298524>.
@article{Protasov2022,
abstract = {Given a coarse space $(X, \mathcal \{E\})$ with the bornology $\mathcal \{B\}$ of bounded subsets, we extend the coarse structure $\mathcal \{E\}$ from $X\times X$ to the natural coarse structure on $(\mathcal \{B\} \backslash \lbrace \emptyset \rbrace ) \times (\mathcal \{B\} \backslash \lbrace \emptyset \rbrace )$ and say that a macro-uniform mapping $f\colon (\mathcal \{B\} \backslash \lbrace \emptyset \rbrace )\rightarrow X$ (or $f\colon [ X]^2 \rightarrow X$) is a selector (or 2-selector) of $(X, \mathcal \{E\})$ if $f(A)\in A$ for each $A\in \mathcal \{B\}\setminus \lbrace \emptyset \rbrace $ ($A \in [X]^2 $, respectively). We prove that a discrete coarse space $(X, \mathcal \{E\})$ admits a selector if and only if $(X, \mathcal \{E\})$ admits a 2-selector if and only if there exists a linear order “$\le $" on $X$ such that the family of intervals $\lbrace [a, b]\colon a,b\in X, a\le b \rbrace $ is a base for the bornology $\mathcal \{B\}$.},
author = {Protasov, Igor},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {bornology; coarse space; selector},
language = {eng},
number = {2},
pages = {261-267},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Selectors of discrete coarse spaces},
url = {http://eudml.org/doc/298524},
volume = {62 63},
year = {2022},
}
TY - JOUR
AU - Protasov, Igor
TI - Selectors of discrete coarse spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2022
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62 63
IS - 2
SP - 261
EP - 267
AB - Given a coarse space $(X, \mathcal {E})$ with the bornology $\mathcal {B}$ of bounded subsets, we extend the coarse structure $\mathcal {E}$ from $X\times X$ to the natural coarse structure on $(\mathcal {B} \backslash \lbrace \emptyset \rbrace ) \times (\mathcal {B} \backslash \lbrace \emptyset \rbrace )$ and say that a macro-uniform mapping $f\colon (\mathcal {B} \backslash \lbrace \emptyset \rbrace )\rightarrow X$ (or $f\colon [ X]^2 \rightarrow X$) is a selector (or 2-selector) of $(X, \mathcal {E})$ if $f(A)\in A$ for each $A\in \mathcal {B}\setminus \lbrace \emptyset \rbrace $ ($A \in [X]^2 $, respectively). We prove that a discrete coarse space $(X, \mathcal {E})$ admits a selector if and only if $(X, \mathcal {E})$ admits a 2-selector if and only if there exists a linear order “$\le $" on $X$ such that the family of intervals $\lbrace [a, b]\colon a,b\in X, a\le b \rbrace $ is a base for the bornology $\mathcal {B}$.
LA - eng
KW - bornology; coarse space; selector
UR - http://eudml.org/doc/298524
ER -
References
top- Artico G., Marconi U., Pelant J., Rotter L., Tkachenko M., Selections and suborderability, Fund. Math. 175 (2002), no. 1, 1–33. Zbl1019.54014MR1971236
- Dikranjan D., Protasov I., Protasova K., Zava N., 10.4995/agt.2019.11645, Appl. Gen. Topology 2 (2019), 431–447. MR4019581DOI10.4995/agt.2019.11645
- Dikranjan D., Protasov I., Zava N., 10.1016/j.topol.2019.05.019, Topology Appl. 263 (2019), 172–198. MR3961119DOI10.1016/j.topol.2019.05.019
- Engelking R., Health R. W., Michael E., 10.1007/BF01425452, Invent. Math. 6 (1968), 150–158. MR0244959DOI10.1007/BF01425452
- de la Harpe P., Topics in Geometric Group Theory, Chicago Lectures in Mathematics, The University Chicago Press, Chicago, 2000. MR1786869
- van Mill J., Pelant J., Pol R., 10.4064/fm-149-2-127-141, Fund. Math. 149 (1996), no. 2, 127–141. MR1376668DOI10.4064/fm-149-2-127-141
- van Mill J., Wattel E., 10.1090/S0002-9939-1981-0627702-4, Proc. Amer. Math. Soc. 83 (1981), no. 3, 601–605. MR0627702DOI10.1090/S0002-9939-1981-0627702-4
- Protasov I., Banakh T., Ball Structures and Colorings of Graphs and Groups, Mathematical Studies Monograph Series, 11, VNTL Publishers, L'viv, 2003. Zbl1147.05033MR2392704
- Protasov I., Protasova K., 10.1007/s40879-018-0236-y, Eur. J. Math. 4 (2018), no. 4, 1515–1520. MR3866708DOI10.1007/s40879-018-0236-y
- Protasov I., Protasova K., 10.1007/s40879-020-00440-x, Eur. J. Math. 7 (2021), no. 3, 1274–1279. MR4289511DOI10.1007/s40879-020-00440-x
- Protasov I., Zarichnyi M., General Asymptology, Mathematical Studies Monograph Series, 12, VNTL Publishers, L'viv, 2007. MR2406623
- Przesławski K., Yost D., 10.1307/mmj/1029003885, Michigan Math. J. 36 (1989), no. 1, 113–134. MR0989940DOI10.1307/mmj/1029003885
- Roe J., 10.1090/ulect/031/10, University Lecture Series, 31, American Mathematical Society, Providence, 2003. Zbl1042.53027MR2007488DOI10.1090/ulect/031/10
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.