Resilient asynchronous primal Schur method

Guillaume Gbikpi-Benissan; Frédéric Magoulès

Applications of Mathematics (2022)

  • Volume: 67, Issue: 6, page 679-704
  • ISSN: 0862-7940

Abstract

top
This paper introduces the application of asynchronous iterations theory within the framework of the primal Schur domain decomposition method. A suitable relaxation scheme is designed, whose asynchronous convergence is established under classical spectral radius conditions. For the usual case where local Schur complement matrices are not constructed, suitable splittings based only on explicitly generated matrices are provided. Numerical experiments are conducted on a supercomputer for both Poisson's and linear elasticity problems. The asynchronous Schur solver outperformed the classical conjugate-gradient-based one in case of computing node failures.

How to cite

top

Gbikpi-Benissan, Guillaume, and Magoulès, Frédéric. "Resilient asynchronous primal Schur method." Applications of Mathematics 67.6 (2022): 679-704. <http://eudml.org/doc/298529>.

@article{Gbikpi2022,
abstract = {This paper introduces the application of asynchronous iterations theory within the framework of the primal Schur domain decomposition method. A suitable relaxation scheme is designed, whose asynchronous convergence is established under classical spectral radius conditions. For the usual case where local Schur complement matrices are not constructed, suitable splittings based only on explicitly generated matrices are provided. Numerical experiments are conducted on a supercomputer for both Poisson's and linear elasticity problems. The asynchronous Schur solver outperformed the classical conjugate-gradient-based one in case of computing node failures.},
author = {Gbikpi-Benissan, Guillaume, Magoulès, Frédéric},
journal = {Applications of Mathematics},
keywords = {asynchronous iterations; Schur complement method; domain decomposition method; parallel computing},
language = {eng},
number = {6},
pages = {679-704},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Resilient asynchronous primal Schur method},
url = {http://eudml.org/doc/298529},
volume = {67},
year = {2022},
}

TY - JOUR
AU - Gbikpi-Benissan, Guillaume
AU - Magoulès, Frédéric
TI - Resilient asynchronous primal Schur method
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 6
SP - 679
EP - 704
AB - This paper introduces the application of asynchronous iterations theory within the framework of the primal Schur domain decomposition method. A suitable relaxation scheme is designed, whose asynchronous convergence is established under classical spectral radius conditions. For the usual case where local Schur complement matrices are not constructed, suitable splittings based only on explicitly generated matrices are provided. Numerical experiments are conducted on a supercomputer for both Poisson's and linear elasticity problems. The asynchronous Schur solver outperformed the classical conjugate-gradient-based one in case of computing node failures.
LA - eng
KW - asynchronous iterations; Schur complement method; domain decomposition method; parallel computing
UR - http://eudml.org/doc/298529
ER -

References

top
  1. Amdahl, G. M., 10.1145/1465482.1465560, Proceedings of the Conference AFIPS Joint Computer Conference, Atlantic City, New Jersey, USA ACM, New York (1967), 483-485. (1967) DOI10.1145/1465482.1465560
  2. Axelsson, O., Kolotilina, L., 10.1002/nla.1680010207, Numer. Linear Algebra Appl. 1 (1994), 155-177. (1994) Zbl0837.65023MR1277800DOI10.1002/nla.1680010207
  3. Bahi, J., Griepentrog, E., Miellou, J. C., 10.1137/S0036142993258105, SIAM J. Numer. Anal. 33 (1996), 1969-1980. (1996) Zbl0859.65073MR1411858DOI10.1137/S0036142993258105
  4. Baudet, G. M., 10.1145/322063.322067, J. Assoc. Comput. Mach. 25 (1978), 226-244. (1978) Zbl0372.68015MR0494894DOI10.1145/322063.322067
  5. Bertsekas, D. P., Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs (1989). (1989) Zbl0743.65107MR3587745
  6. Bertsekas, D. P., Tsitsiklis, J. N., 10.1016/0005-1098(91)90003-K, Automatica 27 (1991), 3-21. (1991) Zbl0728.65041MR1087139DOI10.1016/0005-1098(91)90003-K
  7. Castel, M. J., Migallón, V., Penadés, J., 10.1090/S0025-5718-98-00893-X, Math. Comput. 67 (1998), 209-220. (1998) Zbl0895.65006MR1433264DOI10.1090/S0025-5718-98-00893-X
  8. Chazan, D., Miranker, W., 10.1016/0024-3795(69)90028-7, Linear Algebra Appl. 2 (1969), 199-222. (1969) Zbl0225.65043MR0251888DOI10.1016/0024-3795(69)90028-7
  9. Fan, K., 10.1007/BF01303967, Monatsh. Math. 62 (1958), 219-237. (1958) Zbl0081.25104MR0095856DOI10.1007/BF01303967
  10. Fan, K., 10.1093/qmath/11.1.43, Q. J. Math., Oxf. II. Ser. 11 (1960), 43-49. (1960) Zbl0104.01203MR0117242DOI10.1093/qmath/11.1.43
  11. Frommer, A., Schwandt, H., Szyld, D. B., Asynchronous weighted additive Schwarz methods, ETNA, Electron. Trans. Numer. Anal. 5 (1997), 48-61. (1997) Zbl0890.65027MR1460886
  12. Frommer, A., Szyld, D. B., 10.1007/BF01385865, Numer. Math. 63 (1992), 345-356. (1992) Zbl0764.65018MR1186346DOI10.1007/BF01385865
  13. Gbikpi-Benissan, G., Magoulès, F., 10.1016/j.advengsoft.2020.102827, Adv. Eng. Softw. 146 (2020), Article ID 102827, 9 pages. (2020) DOI10.1016/j.advengsoft.2020.102827
  14. Krivoshapko, S. N., Rynkovskaya, M., 10.1051/matecconf/20179506002, MATEC Web Conf. 95 (2017), Article ID 06002, 5 pages. (2017) DOI10.1051/matecconf/20179506002
  15. Magoulès, F., Gbikpi-Benissan, G., 10.1137/17M1149225, SIAM J. Sci. Comput. 40 (2018), C704--C725. (2018) Zbl1404.65155MR3878314DOI10.1137/17M1149225
  16. Magoulès, F., Gbikpi-Benissan, G., 10.1109/TPDS.2017.2780856, IEEE Trans. Parallel Distrib. Syst. 29 (2018), 819-829. (2018) DOI10.1109/TPDS.2017.2780856
  17. Magoulès, F., Gbikpi-Benissan, G., 10.1016/j.advengsoft.2018.01.009, Adv. Eng. Softw. 119 (2018), 116-133. (2018) DOI10.1016/j.advengsoft.2018.01.009
  18. Magoulès, F., Roux, F.-X., Salmon, S., 10.1137/S1064827502415351, SIAM J. Sci. Comput. 25 (2004), 1497-1515. (2004) Zbl1086.65118MR2087323DOI10.1137/S1064827502415351
  19. Magoulès, F., Szyld, D. B., Venet, C., 10.1007/s00211-017-0872-z, Numer. Math. 137 (2017), 199-227. (2017) Zbl1382.65449MR3679933DOI10.1007/s00211-017-0872-z
  20. Magoulès, F., Venet, C., 10.1016/j.matcom.2016.05.009, Math. Comput. Simulation 145 (2018), 34-49. (2018) Zbl07316164MR3725798DOI10.1016/j.matcom.2016.05.009
  21. Schechter, S., 10.1002/cpa.3160120208, Commun. Pure Appl. Math. 12 (1959), 313-335. (1959) Zbl0096.09801MR0107361DOI10.1002/cpa.3160120208
  22. Spiteri, P., Miellou, J.-C., Baz, D. El, Asynchronous Schwarz alternating method with flexible communication for the obstacle problem, Rés. Syst. Répartis Calculateurs Parallèles 13 (2001), 47-66. (2001) 
  23. Spiteri, P., Miellou, J.-C., Baz, D. El, 10.1023/A:1025561332238, Numer. Algorithms 33 (2003), 461-474. (2003) Zbl1033.65085MR2005584DOI10.1023/A:1025561332238
  24. Varga, R. S., 10.1007/978-3-642-05156-2, Springer Series in Computational Mathematics 27. Springer, Berlin (2000). (2000) Zbl0998.65505MR1753713DOI10.1007/978-3-642-05156-2
  25. Yun, J. H., Kim, S. W., 10.1016/j.cam.2003.09.041, J. Comput. Appl. Math. 166 (2004), 565-580. (2004) Zbl1089.65027MR2041199DOI10.1016/j.cam.2003.09.041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.