Resilient asynchronous primal Schur method
Guillaume Gbikpi-Benissan; Frédéric Magoulès
Applications of Mathematics (2022)
- Volume: 67, Issue: 6, page 679-704
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topGbikpi-Benissan, Guillaume, and Magoulès, Frédéric. "Resilient asynchronous primal Schur method." Applications of Mathematics 67.6 (2022): 679-704. <http://eudml.org/doc/298529>.
@article{Gbikpi2022,
abstract = {This paper introduces the application of asynchronous iterations theory within the framework of the primal Schur domain decomposition method. A suitable relaxation scheme is designed, whose asynchronous convergence is established under classical spectral radius conditions. For the usual case where local Schur complement matrices are not constructed, suitable splittings based only on explicitly generated matrices are provided. Numerical experiments are conducted on a supercomputer for both Poisson's and linear elasticity problems. The asynchronous Schur solver outperformed the classical conjugate-gradient-based one in case of computing node failures.},
author = {Gbikpi-Benissan, Guillaume, Magoulès, Frédéric},
journal = {Applications of Mathematics},
keywords = {asynchronous iterations; Schur complement method; domain decomposition method; parallel computing},
language = {eng},
number = {6},
pages = {679-704},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Resilient asynchronous primal Schur method},
url = {http://eudml.org/doc/298529},
volume = {67},
year = {2022},
}
TY - JOUR
AU - Gbikpi-Benissan, Guillaume
AU - Magoulès, Frédéric
TI - Resilient asynchronous primal Schur method
JO - Applications of Mathematics
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 6
SP - 679
EP - 704
AB - This paper introduces the application of asynchronous iterations theory within the framework of the primal Schur domain decomposition method. A suitable relaxation scheme is designed, whose asynchronous convergence is established under classical spectral radius conditions. For the usual case where local Schur complement matrices are not constructed, suitable splittings based only on explicitly generated matrices are provided. Numerical experiments are conducted on a supercomputer for both Poisson's and linear elasticity problems. The asynchronous Schur solver outperformed the classical conjugate-gradient-based one in case of computing node failures.
LA - eng
KW - asynchronous iterations; Schur complement method; domain decomposition method; parallel computing
UR - http://eudml.org/doc/298529
ER -
References
top- Amdahl, G. M., 10.1145/1465482.1465560, Proceedings of the Conference AFIPS Joint Computer Conference, Atlantic City, New Jersey, USA ACM, New York (1967), 483-485. (1967) DOI10.1145/1465482.1465560
- Axelsson, O., Kolotilina, L., 10.1002/nla.1680010207, Numer. Linear Algebra Appl. 1 (1994), 155-177. (1994) Zbl0837.65023MR1277800DOI10.1002/nla.1680010207
- Bahi, J., Griepentrog, E., Miellou, J. C., 10.1137/S0036142993258105, SIAM J. Numer. Anal. 33 (1996), 1969-1980. (1996) Zbl0859.65073MR1411858DOI10.1137/S0036142993258105
- Baudet, G. M., 10.1145/322063.322067, J. Assoc. Comput. Mach. 25 (1978), 226-244. (1978) Zbl0372.68015MR0494894DOI10.1145/322063.322067
- Bertsekas, D. P., Tsitsiklis, J. N., Parallel and Distributed Computation: Numerical Methods, Prentice-Hall, Englewood Cliffs (1989). (1989) Zbl0743.65107MR3587745
- Bertsekas, D. P., Tsitsiklis, J. N., 10.1016/0005-1098(91)90003-K, Automatica 27 (1991), 3-21. (1991) Zbl0728.65041MR1087139DOI10.1016/0005-1098(91)90003-K
- Castel, M. J., Migallón, V., Penadés, J., 10.1090/S0025-5718-98-00893-X, Math. Comput. 67 (1998), 209-220. (1998) Zbl0895.65006MR1433264DOI10.1090/S0025-5718-98-00893-X
- Chazan, D., Miranker, W., 10.1016/0024-3795(69)90028-7, Linear Algebra Appl. 2 (1969), 199-222. (1969) Zbl0225.65043MR0251888DOI10.1016/0024-3795(69)90028-7
- Fan, K., 10.1007/BF01303967, Monatsh. Math. 62 (1958), 219-237. (1958) Zbl0081.25104MR0095856DOI10.1007/BF01303967
- Fan, K., 10.1093/qmath/11.1.43, Q. J. Math., Oxf. II. Ser. 11 (1960), 43-49. (1960) Zbl0104.01203MR0117242DOI10.1093/qmath/11.1.43
- Frommer, A., Schwandt, H., Szyld, D. B., Asynchronous weighted additive Schwarz methods, ETNA, Electron. Trans. Numer. Anal. 5 (1997), 48-61. (1997) Zbl0890.65027MR1460886
- Frommer, A., Szyld, D. B., 10.1007/BF01385865, Numer. Math. 63 (1992), 345-356. (1992) Zbl0764.65018MR1186346DOI10.1007/BF01385865
- Gbikpi-Benissan, G., Magoulès, F., 10.1016/j.advengsoft.2020.102827, Adv. Eng. Softw. 146 (2020), Article ID 102827, 9 pages. (2020) DOI10.1016/j.advengsoft.2020.102827
- Krivoshapko, S. N., Rynkovskaya, M., 10.1051/matecconf/20179506002, MATEC Web Conf. 95 (2017), Article ID 06002, 5 pages. (2017) DOI10.1051/matecconf/20179506002
- Magoulès, F., Gbikpi-Benissan, G., 10.1137/17M1149225, SIAM J. Sci. Comput. 40 (2018), C704--C725. (2018) Zbl1404.65155MR3878314DOI10.1137/17M1149225
- Magoulès, F., Gbikpi-Benissan, G., 10.1109/TPDS.2017.2780856, IEEE Trans. Parallel Distrib. Syst. 29 (2018), 819-829. (2018) DOI10.1109/TPDS.2017.2780856
- Magoulès, F., Gbikpi-Benissan, G., 10.1016/j.advengsoft.2018.01.009, Adv. Eng. Softw. 119 (2018), 116-133. (2018) DOI10.1016/j.advengsoft.2018.01.009
- Magoulès, F., Roux, F.-X., Salmon, S., 10.1137/S1064827502415351, SIAM J. Sci. Comput. 25 (2004), 1497-1515. (2004) Zbl1086.65118MR2087323DOI10.1137/S1064827502415351
- Magoulès, F., Szyld, D. B., Venet, C., 10.1007/s00211-017-0872-z, Numer. Math. 137 (2017), 199-227. (2017) Zbl1382.65449MR3679933DOI10.1007/s00211-017-0872-z
- Magoulès, F., Venet, C., 10.1016/j.matcom.2016.05.009, Math. Comput. Simulation 145 (2018), 34-49. (2018) Zbl07316164MR3725798DOI10.1016/j.matcom.2016.05.009
- Schechter, S., 10.1002/cpa.3160120208, Commun. Pure Appl. Math. 12 (1959), 313-335. (1959) Zbl0096.09801MR0107361DOI10.1002/cpa.3160120208
- Spiteri, P., Miellou, J.-C., Baz, D. El, Asynchronous Schwarz alternating method with flexible communication for the obstacle problem, Rés. Syst. Répartis Calculateurs Parallèles 13 (2001), 47-66. (2001)
- Spiteri, P., Miellou, J.-C., Baz, D. El, 10.1023/A:1025561332238, Numer. Algorithms 33 (2003), 461-474. (2003) Zbl1033.65085MR2005584DOI10.1023/A:1025561332238
- Varga, R. S., 10.1007/978-3-642-05156-2, Springer Series in Computational Mathematics 27. Springer, Berlin (2000). (2000) Zbl0998.65505MR1753713DOI10.1007/978-3-642-05156-2
- Yun, J. H., Kim, S. W., 10.1016/j.cam.2003.09.041, J. Comput. Appl. Math. 166 (2004), 565-580. (2004) Zbl1089.65027MR2041199DOI10.1016/j.cam.2003.09.041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.