G -supplemented property in the lattices

Shahabaddin Ebrahimi Atani

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 4, page 525-545
  • ISSN: 0862-7959

Abstract

top
Let L be a lattice with the greatest element 1 . Following the concept of generalized small subfilter, we define g -supplemented filters and investigate the basic properties and possible structures of these filters.

How to cite

top

Ebrahimi Atani, Shahabaddin. "$G$-supplemented property in the lattices." Mathematica Bohemica 147.4 (2022): 525-545. <http://eudml.org/doc/298563>.

@article{EbrahimiAtani2022,
abstract = {Let $L$ be a lattice with the greatest element $1$. Following the concept of generalized small subfilter, we define $g$-supplemented filters and investigate the basic properties and possible structures of these filters.},
author = {Ebrahimi Atani, Shahabaddin},
journal = {Mathematica Bohemica},
keywords = {filter; $g$-small; $g$-supplemented; lattice},
language = {eng},
number = {4},
pages = {525-545},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$G$-supplemented property in the lattices},
url = {http://eudml.org/doc/298563},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Ebrahimi Atani, Shahabaddin
TI - $G$-supplemented property in the lattices
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 4
SP - 525
EP - 545
AB - Let $L$ be a lattice with the greatest element $1$. Following the concept of generalized small subfilter, we define $g$-supplemented filters and investigate the basic properties and possible structures of these filters.
LA - eng
KW - filter; $g$-small; $g$-supplemented; lattice
UR - http://eudml.org/doc/298563
ER -

References

top
  1. Birkhoff, G., 10.1090/coll/025, Colloquium Publications 25. AMS, Providence (1967). (1967) Zbl0153.02501MR0227053DOI10.1090/coll/025
  2. Călugăreanu, G., 10.1007/978-94-015-9588-9, Kluwer Texts in the Mathematical Sciences 22. Kluwer Academic Publishers, Dordrecht (2000). (2000) Zbl0959.06001MR1782739DOI10.1007/978-94-015-9588-9
  3. Clark, J., Lomp, C., Vanaja, N., Wisbauer, R., 10.1007/3-7643-7573-6, Frontiers in Mathematics. Birkhäuser, Basel (2006). (2006) Zbl1102.16001MR2253001DOI10.1007/3-7643-7573-6
  4. Atani, S. Ebrahimi, Chenari, M., Supplemented property in the lattices, Serdica Math. J. 46 (2020), 73-88. (2020) MR4124062
  5. Atani, S. Ebrahimi, Hesari, S. Dolati Pish, Khoramdel, M., Bazari, M. Sedghi Shanbeh, 10.4418/2018.73.2.5, Matematiche 73 (2018), 297-318. (2018) Zbl07142702MR3884546DOI10.4418/2018.73.2.5
  6. Atani, S. Ebrahimi, Bazari, M. Sedghi Shanbeh, 10.7151/dmgaa.1253, Discuss. Math., Gen. Algebra Appl. 36 (2016), 157-168. (2016) Zbl07278179MR3594959DOI10.7151/dmgaa.1253
  7. Kasch, F., Mares, E. A., 10.1017/S0027763000026350, Nagoya Math. J. 27 (1966), 525-529. (1966) Zbl0158.28901MR0199227DOI10.1017/S0027763000026350
  8. Koşar, B., Nebiyev, C., Sökmez, N., 10.1007/s11253-015-1127-8, Ukr. Math. J. 67 (2015), 975-980. (2015) Zbl1352.16001MR3432491DOI10.1007/s11253-015-1127-8
  9. Mohamed, S. H., Müller, B. J., 10.1017/CBO9780511600692, London Mathematical Society Lecture Note Series 147. Cambridge University Press, London (1990). (1990) Zbl0701.16001MR1084376DOI10.1017/CBO9780511600692
  10. Quynh, T. C., Tin, P. H., 10.1007/s10013-013-0022-6, Vietnam J. Math. 41 (2013), 303-312. (2013) Zbl1281.16006MR3103264DOI10.1007/s10013-013-0022-6
  11. Wisbauer, R., Foundations of Module and Ring Theory: A Handbook for Study and Research, Algebra, Logic and Applications 3. Gordon and Breach, Philadelphia (1991). (1991) Zbl0746.16001MR1144522
  12. Zhou, D. X., Zhang, X. R., Small-essential submodules and Morita duality, Southeast Asian Bull. Math. 35 (2011), 1051-1062. (2011) Zbl1265.16011MR2907772
  13. Zöschinger, H., 10.1016/0021-8693(74)90109-4, J. Algebra 29 (1974), 42-56 German. (1974) Zbl0277.13008MR0340347DOI10.1016/0021-8693(74)90109-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.