Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital -algebras
Mathematica Bohemica (2022)
- Volume: 147, Issue: 4, page 435-460
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKodaka, Kazunori. "Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital $C^*$-algebras." Mathematica Bohemica 147.4 (2022): 435-460. <http://eudml.org/doc/298628>.
@article{Kodaka2022,
abstract = {Let $\mathcal \{A\}=\lbrace A_t \rbrace _\{t\in G\}$ and $\mathcal \{B\}=\lbrace B_t \rbrace _\{t\in G\}$ be $C^*$-algebraic bundles over a finite group $G$. Let $C=\bigoplus _\{t\in G\}A_t$ and $D=\bigoplus _\{t\in G\}B_t$. Also, let $A=A_e$ and $B=B_e$, where $e$ is the unit element in $G$. We suppose that $C$ and $D$ are unital and $A$ and $B$ have the unit elements in $C$ and $D$, respectively. In this paper, we show that if there is an equivalence $\mathcal \{A\}-\mathcal \{B\}$-bundle over $G$ with some properties, then the unital inclusions of unital $C^*$-algebras $A\subset C$ and $B\subset D$ induced by $\mathcal \{A\}$ and $\mathcal \{B\}$ are strongly Morita equivalent. Also, we suppose that $\mathcal \{A\}$ and $\mathcal \{B\}$ are saturated and that $A^\{\prime \} \cap C=\{\bf C\} 1$. We show that if $A\subset C$ and $B\subset D$ are strongly Morita equivalent, then there are an automorphism $f$ of $G$ and an equivalence bundle $\mathcal \{A\}-\mathcal \{B\}^f $-bundle over $G$ with the above properties, where $\mathcal \{B\}^f$ is the $C^*$-algebraic bundle induced by $\mathcal \{B\}$ and $f$, which is defined by $\mathcal \{B\}^f =\lbrace B_\{f(t)\}\rbrace _\{t\in G\}$. Furthermore, we give an application.},
author = {Kodaka, Kazunori},
journal = {Mathematica Bohemica},
keywords = {$C^*$-algebraic bundle; equivalence bundle; inclusions of $C^*$-algebra; strong Morita equivalence},
language = {eng},
number = {4},
pages = {435-460},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital $C^*$-algebras},
url = {http://eudml.org/doc/298628},
volume = {147},
year = {2022},
}
TY - JOUR
AU - Kodaka, Kazunori
TI - Equivalence bundles over a finite group and strong Morita equivalence for unital inclusions of unital $C^*$-algebras
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 4
SP - 435
EP - 460
AB - Let $\mathcal {A}=\lbrace A_t \rbrace _{t\in G}$ and $\mathcal {B}=\lbrace B_t \rbrace _{t\in G}$ be $C^*$-algebraic bundles over a finite group $G$. Let $C=\bigoplus _{t\in G}A_t$ and $D=\bigoplus _{t\in G}B_t$. Also, let $A=A_e$ and $B=B_e$, where $e$ is the unit element in $G$. We suppose that $C$ and $D$ are unital and $A$ and $B$ have the unit elements in $C$ and $D$, respectively. In this paper, we show that if there is an equivalence $\mathcal {A}-\mathcal {B}$-bundle over $G$ with some properties, then the unital inclusions of unital $C^*$-algebras $A\subset C$ and $B\subset D$ induced by $\mathcal {A}$ and $\mathcal {B}$ are strongly Morita equivalent. Also, we suppose that $\mathcal {A}$ and $\mathcal {B}$ are saturated and that $A^{\prime } \cap C={\bf C} 1$. We show that if $A\subset C$ and $B\subset D$ are strongly Morita equivalent, then there are an automorphism $f$ of $G$ and an equivalence bundle $\mathcal {A}-\mathcal {B}^f $-bundle over $G$ with the above properties, where $\mathcal {B}^f$ is the $C^*$-algebraic bundle induced by $\mathcal {B}$ and $f$, which is defined by $\mathcal {B}^f =\lbrace B_{f(t)}\rbrace _{t\in G}$. Furthermore, we give an application.
LA - eng
KW - $C^*$-algebraic bundle; equivalence bundle; inclusions of $C^*$-algebra; strong Morita equivalence
UR - http://eudml.org/doc/298628
ER -
References
top- Abadie, F., Ferraro, D., 10.7900/jot.2018feb02.2211, J. Oper. Theory 81 (2019), 273-319. (2019) Zbl1438.46066MR3959060DOI10.7900/jot.2018feb02.2211
- Brown, L. G., Green, P., Rieffel, M. A., 10.2140/pjm.1977.71.349, Pac. J. Math. 71 (1977), 349-363. (1977) Zbl0362.46043MR0463928DOI10.2140/pjm.1977.71.349
- Brown, L. G., Mingo, J. A., Shen, N-T., 10.4153/CJM-1994-065-5, Can. J. Math. 46 (1994), 1150-1174. (1994) Zbl0846.46031MR1304338DOI10.4153/CJM-1994-065-5
- Jensen, K. K., Thomsen, K., 10.1007/978-1-4612-0449-7, Mathematics: Theory & Applications. Birkhäuser, Basel (1991). (1991) Zbl1155.19300MR1124848DOI10.1007/978-1-4612-0449-7
- Kajiwara, T., Watatani, Y., 10.1090/S0002-9939-98-04118-5, Proc. Am. Math. Soc. 126 (1998), 841-851. (1998) Zbl0890.46047MR1423344DOI10.1090/S0002-9939-98-04118-5
- Kajiwara, T., Watatani, Y., 10.1090/S0002-9947-00-02392-8, Trans. Am. Math. Soc. 352 (2000), 3429-3472. (2000) Zbl0954.46034MR1624182DOI10.1090/S0002-9947-00-02392-8
- Kodaka, K., 10.14232/actasm-019-271-1, Acta Sci. Math. 86 (2020), 183-207. (2020) Zbl1463.46081MR4103011DOI10.14232/actasm-019-271-1
- Kodaka, K., Teruya, T., Involutive equivalence bimodules and inclusions of -algebras with Watatani index 2, J. Oper. Theory 57 (2007), 3-18. (2007) Zbl1113.46057MR2301934
- Kodaka, K., Teruya, T., 10.1017/S1446788709000445, J. Aust. Math. Soc. 88 (2010), 363-383. (2010) Zbl1204.46032MR2827423DOI10.1017/S1446788709000445
- Kodaka, K., Teruya, T., 10.1017/S1446788717000301, J. Aust. Math. Soc. 105 (2018), 103-144. (2018) Zbl1402.46039MR3820258DOI10.1017/S1446788717000301
- Kodaka, K., Teruya, T., 10.4064/sm190424-5-1, Stud. Math. 256 (2021), 169-185. (2021) Zbl07282487MR4165509DOI10.4064/sm190424-5-1
- Rieffel, M. A., 10.2140/pjm.1981.93.415, Pac. J. Math. 93 (1981), 415-429. (1981) Zbl0499.46039MR0623572DOI10.2140/pjm.1981.93.415
- Watatani, Y., 10.1090/memo/0424, Mem. Am. Math. Soc. 424 (1990), 117 pages. (1990) Zbl0697.46024MR0996807DOI10.1090/memo/0424
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.