ϕ -multipliers on a class of topological algebras

Ali Naziri-Kordkandi

Mathematica Bohemica (2022)

  • Volume: 147, Issue: 4, page 503-512
  • ISSN: 0862-7959

Abstract

top
In this paper, we generalize the concept of ϕ -multipliers on Banach algebras to a class of topological algebras. Then the characterizations of ϕ -multipliers are investigated in these algebras.

How to cite

top

Naziri-Kordkandi, Ali. "$\varphi $-multipliers on a class of topological algebras." Mathematica Bohemica 147.4 (2022): 503-512. <http://eudml.org/doc/298749>.

@article{Naziri2022,
abstract = {In this paper, we generalize the concept of $\varphi $-multipliers on Banach algebras to a class of topological algebras. Then the characterizations of $\varphi $-multipliers are investigated in these algebras.},
author = {Naziri-Kordkandi, Ali},
journal = {Mathematica Bohemica},
keywords = {fundamental topological algebra; infrasequential topological algebra; approximate identity; $\varphi $-multiplier; uniformly bounded},
language = {eng},
number = {4},
pages = {503-512},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$\varphi $-multipliers on a class of topological algebras},
url = {http://eudml.org/doc/298749},
volume = {147},
year = {2022},
}

TY - JOUR
AU - Naziri-Kordkandi, Ali
TI - $\varphi $-multipliers on a class of topological algebras
JO - Mathematica Bohemica
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 147
IS - 4
SP - 503
EP - 512
AB - In this paper, we generalize the concept of $\varphi $-multipliers on Banach algebras to a class of topological algebras. Then the characterizations of $\varphi $-multipliers are investigated in these algebras.
LA - eng
KW - fundamental topological algebra; infrasequential topological algebra; approximate identity; $\varphi $-multiplier; uniformly bounded
UR - http://eudml.org/doc/298749
ER -

References

top
  1. Abel, M., 10.3176/proc.2017.1.05, Proc. Est. Acad. Sci. 66 (2017), 40-53. (2017) Zbl1404.46042MR3636472DOI10.3176/proc.2017.1.05
  2. Abel, M., Kokk, A., 10.15352/afa/1399900198, Ann. Funct. Anal. 2 (2011), 92-100. (2011) Zbl1253.46051MR2855290DOI10.15352/afa/1399900198
  3. Adib, M., 10.1155/2015/951021, Abstr. Appl. Anal. 2015 (2015), Article ID 951021, 6 pages. (2015) Zbl1350.46035MR3319149DOI10.1155/2015/951021
  4. Ansari-Piri, E., 10.1017/S001309150002887X, Proc. Edinb. Math. Soc., II. Ser. 33 (1990), 53-59. (1990) Zbl0699.46027MR1038764DOI10.1017/S001309150002887X
  5. Ansari-Piri, E., 10.3906/mat-0810-12, Turk. J. Math. 34 (2010), 385-391. (2010) Zbl1202.46052MR2681583DOI10.3906/mat-0810-12
  6. Balachandran, V. K., 10.1016/s0304-0208(00)80001-8, North-Holland Mathematics Studies 185. Elsevier, Amsterdam (2000). (2000) Zbl0979.46029MR1836752DOI10.1016/s0304-0208(00)80001-8
  7. Birtel, F. T., 10.1090/S0002-9939-1962-0176345-6, Proc. Am. Math. Soc. 13 (1962), 204-210. (1962) Zbl0117.09701MR0176345DOI10.1090/S0002-9939-1962-0176345-6
  8. Bonsall, F. F., Duncan, J., 10.1007/978-3-642-65669-9, Ergebnisse der Mathematik und ihrer Grenzgebiete 80. Springer, Berlin (1973). (1973) Zbl0271.46039MR423029DOI10.1007/978-3-642-65669-9
  9. Helgason, S., 10.2307/1969971, Ann. Math. (2) 64 (1956), 240-254. (1956) Zbl0072.32303MR0082075DOI10.2307/1969971
  10. Heuser, H. G., Functional Analysis, John Wiley & Sons, Chichester (1982). (1982) Zbl0465.47001MR0640429
  11. Husain, T., 10.4153/CMB-1979-054-1, Can. Math. Bull. 22 (1979), 413-418. (1979) Zbl0427.46029MR0563754DOI10.4153/CMB-1979-054-1
  12. Husain, T., Multipliers of topological algebras, Diss. Math. 285 (1989), 1-36. (1989) Zbl0676.46038MR0996938
  13. Larsen, R., 10.1007/978-3-642-65030-7, Die Grundlehren der mathematischen Wissenschaften 175. Springer, New York (1971). (1971) Zbl0213.13301MR0435738DOI10.1007/978-3-642-65030-7
  14. Naziri-Kordkandi, A., Zohri, A., Ershad, F., Yousefi, B., 10.22075/ijnaa.2019.13751.1715, Int. J. Nonlinear Anal. Appl. 12 (2021), 129-141. (2021) DOI10.22075/ijnaa.2019.13751.1715
  15. Rudin, W., Functional Analysis, McGraw-Hill Series in Higher Mathematics. McGraw-Hill, New York (1973). (1973) Zbl0253.46001MR365062
  16. Vukman, J., An identity related to centralizers in semiprime rings, Commentat. Math. Univ. Carol. 40 (1999), 447-456. (1999) Zbl1014.16021MR1732490
  17. Wang, J.-K., 10.2140/pjm.1961.11.1131, Pac. J. Math. 11 (1961), 1131-1149. (1961) Zbl0127.33302MR138014DOI10.2140/pjm.1961.11.1131

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.