Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium

Rakesh Tiwari; Vladimir Rakočević; Shraddha Rajput

Kybernetika (2022)

  • Volume: 58, Issue: 3, page 335-353
  • ISSN: 0023-5954

Abstract

top
In this paper, we introduce Θ f -type controlled fuzzy metric spaces and establish some fixed point results in this spaces. We provide suitable examples to validate our result. We also employ an application to substantiate the utility of our established result for finding the unique solution of an integral equation emerging in the dynamic market equilibrium aspects to economics.

How to cite

top

Tiwari, Rakesh, Rakočević, Vladimir, and Rajput, Shraddha. "Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium." Kybernetika 58.3 (2022): 335-353. <http://eudml.org/doc/298889>.

@article{Tiwari2022,
abstract = {In this paper, we introduce $\Theta _f$-type controlled fuzzy metric spaces and establish some fixed point results in this spaces. We provide suitable examples to validate our result. We also employ an application to substantiate the utility of our established result for finding the unique solution of an integral equation emerging in the dynamic market equilibrium aspects to economics.},
author = {Tiwari, Rakesh, Rakočević, Vladimir, Rajput, Shraddha},
journal = {Kybernetika},
keywords = {fixed point; fuzzy metric spaces; controlled fuzzy metric spaces; fuzzy $\Theta _f$-contractive mapping; dynamic market equilibrium},
language = {eng},
number = {3},
pages = {335-353},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium},
url = {http://eudml.org/doc/298889},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Tiwari, Rakesh
AU - Rakočević, Vladimir
AU - Rajput, Shraddha
TI - Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 3
SP - 335
EP - 353
AB - In this paper, we introduce $\Theta _f$-type controlled fuzzy metric spaces and establish some fixed point results in this spaces. We provide suitable examples to validate our result. We also employ an application to substantiate the utility of our established result for finding the unique solution of an integral equation emerging in the dynamic market equilibrium aspects to economics.
LA - eng
KW - fixed point; fuzzy metric spaces; controlled fuzzy metric spaces; fuzzy $\Theta _f$-contractive mapping; dynamic market equilibrium
UR - http://eudml.org/doc/298889
ER -

References

top
  1. Aydi, H., Bota, M., Karapinar, E., S.Moradi, A common fixed point for weak φ -contractions on b -metric spaces., Fixed Point Theory 13 (2012), 337-346. MR3024322
  2. Afshari, H., Atapour, M., Aydi, H., Generalized α - ψ - Geraghty multivalued mappings on b -metric spaces endowed with a graph., J. Appl. Eng. Math. 7 (2017), 248-260. MR3741903
  3. Aydi, H., R.Banković, I.Mitrović, Nazam, M., , Discret. Dyn. Nat. Soc. (2018), 4745764. MR3827845DOI
  4. Alharbi, N., Aydi, H., Felhi, A., Ozel, C., Sahmim, S., α -Contractive mappings on rectangular b-metric spaces and an application to integral equations., J. Math. Anal. 9 (2018), 47-60. MR3896745
  5. Banach, S., , Fund. Math. 3 (1922), 133-181. MR3949898DOI
  6. Bakhtin, I. A., , Funct. Anal. 30 (1989), 26-37. MR1204890DOI
  7. Boriceanu, M., Petrusel., A., Rus, I. A., Fixed point theorems for some multivalued generalized contraction in b-metric spaces., Int. J. Math. Statist. 6 (2010), 65-76. MR2520394
  8. Czerwik, S., , Acta Math. Inform. Univ. Ostrava 1 (1993), 5-11. MR1250922DOI
  9. Dowling, T. E., Introduction to Mathematical Economics., Schaum's Outline Series, 2001. 
  10. George, A., Veeramani, P., , Fuzzy Sets Systems 64 (1994), 395-399. Zbl0843.54014MR1289545DOI
  11. Gopal, D., , Adv. Metric Fixed Point Theory Appl. (2021), 241-282. MR4306467DOI
  12. Gopal, D., T.Došenović, , Metric Struct. Fixed Point Theory (2021), 199-244. MR4394399DOI
  13. Gopal, D., Vetro, C., , Iranian J. Fuzzy Systems 11(2014), 3, 95-107. MR3237493DOI
  14. Grabiec, M., , Fuzzy Sets Systems 27 (1988), 385-389. Zbl0664.54032MR0956385DOI
  15. Hao, Y., Guan, H., , J. Funct. Spaces 2021 (2021), 5573983. MR4243986DOI
  16. Kim, J. K., Common fixed point theorems for non-compatible self-mappings in b-fuzzy metric spaces., J. Comput. Anal. Appl. 22 (2017), 336-345. MR3643679
  17. Kramosil, I., Michálek, J., , Kybernetika 11 (1975), 326-334. MR0410633DOI
  18. Mehmood, F., Ali, R., Ionescu, C., Kamran, T., , J. Math. Anal. 8 (2017), 124-131. MR3750093DOI
  19. Melliani, S., Moussaoui, A., Fixed point theorem using a new class of fuzzy contractive mappings., J. Univer. Math. 1 (2018), 2, 148-154. 
  20. Mihet, D., , Fuzzy Sets Systems 159 (2008), 6, 739-744. MR2410532DOI
  21. Mlaiki, N., Aydi, H., Souayah, N., Abdeljawad, T., , Math. Molecul. Divers. Preservat. Int. 6 (2018), 1-7. DOI
  22. Nadaban, S., , Int. J. Comput. Commun. Control 11 (2016), 273-281. DOI
  23. Nasr, H. S., Imdad, M., Khan, I., Hasanuzzaman, M., , J. Intell. Fuzzy Systems (2020), 1-10. DOI
  24. Sezen, M. S., , Numer. Part. Different. Equations (2020), 1-11. MR4191089DOI
  25. Shukla, S., Gopal, D., Sintunavarat, W., , Fuzzy Sets Systems 350 (2018), 85-94. MR3852589DOI
  26. Schweizer, B., Sklar, A., , Paciffc J. Math. 10 (1960), 313-334. Zbl0136.39301MR0115153DOI
  27. Wardowski, D., , Fuzzy Sets Systems 222 (2013), 108-114. MR3053895DOI
  28. Zadeh, A. L., , Inform. Control 8 (1965), 338-353. Zbl0942.00007MR0219427DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.