Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium
Rakesh Tiwari; Vladimir Rakočević; Shraddha Rajput
Kybernetika (2022)
- Volume: 58, Issue: 3, page 335-353
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topTiwari, Rakesh, Rakočević, Vladimir, and Rajput, Shraddha. "Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium." Kybernetika 58.3 (2022): 335-353. <http://eudml.org/doc/298889>.
@article{Tiwari2022,
abstract = {In this paper, we introduce $\Theta _f$-type controlled fuzzy metric spaces and establish some fixed point results in this spaces. We provide suitable examples to validate our result. We also employ an application to substantiate the utility of our established result for finding the unique solution of an integral equation emerging in the dynamic market equilibrium aspects to economics.},
author = {Tiwari, Rakesh, Rakočević, Vladimir, Rajput, Shraddha},
journal = {Kybernetika},
keywords = {fixed point; fuzzy metric spaces; controlled fuzzy metric spaces; fuzzy $\Theta _f$-contractive mapping; dynamic market equilibrium},
language = {eng},
number = {3},
pages = {335-353},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium},
url = {http://eudml.org/doc/298889},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Tiwari, Rakesh
AU - Rakočević, Vladimir
AU - Rajput, Shraddha
TI - Fixed point result in controlled fuzzy metric spaces with application to dynamic market equilibrium
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 3
SP - 335
EP - 353
AB - In this paper, we introduce $\Theta _f$-type controlled fuzzy metric spaces and establish some fixed point results in this spaces. We provide suitable examples to validate our result. We also employ an application to substantiate the utility of our established result for finding the unique solution of an integral equation emerging in the dynamic market equilibrium aspects to economics.
LA - eng
KW - fixed point; fuzzy metric spaces; controlled fuzzy metric spaces; fuzzy $\Theta _f$-contractive mapping; dynamic market equilibrium
UR - http://eudml.org/doc/298889
ER -
References
top- Aydi, H., Bota, M., Karapinar, E., S.Moradi, A common fixed point for weak -contractions on -metric spaces., Fixed Point Theory 13 (2012), 337-346. MR3024322
- Afshari, H., Atapour, M., Aydi, H., Generalized Geraghty multivalued mappings on -metric spaces endowed with a graph., J. Appl. Eng. Math. 7 (2017), 248-260. MR3741903
- Aydi, H., R.Banković, I.Mitrović, Nazam, M., , Discret. Dyn. Nat. Soc. (2018), 4745764. MR3827845DOI
- Alharbi, N., Aydi, H., Felhi, A., Ozel, C., Sahmim, S., -Contractive mappings on rectangular b-metric spaces and an application to integral equations., J. Math. Anal. 9 (2018), 47-60. MR3896745
- Banach, S., , Fund. Math. 3 (1922), 133-181. MR3949898DOI
- Bakhtin, I. A., , Funct. Anal. 30 (1989), 26-37. MR1204890DOI
- Boriceanu, M., Petrusel., A., Rus, I. A., Fixed point theorems for some multivalued generalized contraction in b-metric spaces., Int. J. Math. Statist. 6 (2010), 65-76. MR2520394
- Czerwik, S., , Acta Math. Inform. Univ. Ostrava 1 (1993), 5-11. MR1250922DOI
- Dowling, T. E., Introduction to Mathematical Economics., Schaum's Outline Series, 2001.
- George, A., Veeramani, P., , Fuzzy Sets Systems 64 (1994), 395-399. Zbl0843.54014MR1289545DOI
- Gopal, D., , Adv. Metric Fixed Point Theory Appl. (2021), 241-282. MR4306467DOI
- Gopal, D., T.Došenović, , Metric Struct. Fixed Point Theory (2021), 199-244. MR4394399DOI
- Gopal, D., Vetro, C., , Iranian J. Fuzzy Systems 11(2014), 3, 95-107. MR3237493DOI
- Grabiec, M., , Fuzzy Sets Systems 27 (1988), 385-389. Zbl0664.54032MR0956385DOI
- Hao, Y., Guan, H., , J. Funct. Spaces 2021 (2021), 5573983. MR4243986DOI
- Kim, J. K., Common fixed point theorems for non-compatible self-mappings in b-fuzzy metric spaces., J. Comput. Anal. Appl. 22 (2017), 336-345. MR3643679
- Kramosil, I., Michálek, J., , Kybernetika 11 (1975), 326-334. MR0410633DOI
- Mehmood, F., Ali, R., Ionescu, C., Kamran, T., , J. Math. Anal. 8 (2017), 124-131. MR3750093DOI
- Melliani, S., Moussaoui, A., Fixed point theorem using a new class of fuzzy contractive mappings., J. Univer. Math. 1 (2018), 2, 148-154.
- Mihet, D., , Fuzzy Sets Systems 159 (2008), 6, 739-744. MR2410532DOI
- Mlaiki, N., Aydi, H., Souayah, N., Abdeljawad, T., , Math. Molecul. Divers. Preservat. Int. 6 (2018), 1-7. DOI
- Nadaban, S., , Int. J. Comput. Commun. Control 11 (2016), 273-281. DOI
- Nasr, H. S., Imdad, M., Khan, I., Hasanuzzaman, M., , J. Intell. Fuzzy Systems (2020), 1-10. DOI
- Sezen, M. S., , Numer. Part. Different. Equations (2020), 1-11. MR4191089DOI
- Shukla, S., Gopal, D., Sintunavarat, W., , Fuzzy Sets Systems 350 (2018), 85-94. MR3852589DOI
- Schweizer, B., Sklar, A., , Paciffc J. Math. 10 (1960), 313-334. Zbl0136.39301MR0115153DOI
- Wardowski, D., , Fuzzy Sets Systems 222 (2013), 108-114. MR3053895DOI
- Zadeh, A. L., , Inform. Control 8 (1965), 338-353. Zbl0942.00007MR0219427DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.