Quasi-tree graphs with the minimal Sombor indices
Yibo Li; Huiqing Liu; Ruiting Zhang
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 1227-1238
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Yibo, Liu, Huiqing, and Zhang, Ruiting. "Quasi-tree graphs with the minimal Sombor indices." Czechoslovak Mathematical Journal 72.4 (2022): 1227-1238. <http://eudml.org/doc/298892>.
@article{Li2022,
abstract = {The Sombor index $SO(G)$ of a graph $G$ is the sum of the edge weights $\sqrt\{d^2_G(u)+d^2_G(v)\}$ of all edges $uv$ of $G$, where $d_G(u)$ denotes the degree of the vertex $u$ in $G$. A connected graph $G = (V ,E)$ is called a quasi-tree if there exists $u\in V (G)$ such that $G-u$ is a tree. Denote $\mathcal \{Q\}(n,k)=\lbrace G \colon G$ is a quasi-tree graph of order $n$ with $G-u$ being a tree and $d_G(u)=k\rbrace $. We determined the minimum and the second minimum Sombor indices of all quasi-trees in $\mathcal \{Q\}(n,k)$. Furthermore, we characterized the corresponding extremal graphs, respectively.},
author = {Li, Yibo, Liu, Huiqing, Zhang, Ruiting},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sombor index; quasi-tree; tree},
language = {eng},
number = {4},
pages = {1227-1238},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Quasi-tree graphs with the minimal Sombor indices},
url = {http://eudml.org/doc/298892},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Li, Yibo
AU - Liu, Huiqing
AU - Zhang, Ruiting
TI - Quasi-tree graphs with the minimal Sombor indices
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1227
EP - 1238
AB - The Sombor index $SO(G)$ of a graph $G$ is the sum of the edge weights $\sqrt{d^2_G(u)+d^2_G(v)}$ of all edges $uv$ of $G$, where $d_G(u)$ denotes the degree of the vertex $u$ in $G$. A connected graph $G = (V ,E)$ is called a quasi-tree if there exists $u\in V (G)$ such that $G-u$ is a tree. Denote $\mathcal {Q}(n,k)=\lbrace G \colon G$ is a quasi-tree graph of order $n$ with $G-u$ being a tree and $d_G(u)=k\rbrace $. We determined the minimum and the second minimum Sombor indices of all quasi-trees in $\mathcal {Q}(n,k)$. Furthermore, we characterized the corresponding extremal graphs, respectively.
LA - eng
KW - Sombor index; quasi-tree; tree
UR - http://eudml.org/doc/298892
ER -
References
top- Bondy, J. A., Murty, U. S. R., Graph Theory, Graduate Texts in Mathematics 244. Springer, Berlin (2008),9999DOI99999 10.1007/978-1-84628-970-5 . (2008) Zbl1134.05001MR2368647
- Chen, H., Li, W., Wang, J., 10.46793/match.87-1.023C, MATCH Commun. Math. Comput. Chem. 87 (2022), 23-49. (2022) Zbl7582823DOI10.46793/match.87-1.023C
- Cruz, R., Gutman, I., Rada, J., 10.1016/j.amc.2021.126018, Appl. Math. Comput. 399 (2021), Article ID 126018, 10 pages. (2021) Zbl07423489MR4212004DOI10.1016/j.amc.2021.126018
- Cruz, R., Rada, J., 10.1007/s10910-021-01232-8, J. Math. Chem. 59 (2021), 1098-1116. (2021) Zbl1462.05071MR4232832DOI10.1007/s10910-021-01232-8
- Cruz, R., Rada, J., Sigarreta, J. M., 10.1016/j.amc.2021.126414, Appl. Math. Comput. 409 (2021), Article ID 126414, 9 pages. (2021) Zbl07425030MR4271495DOI10.1016/j.amc.2021.126414
- Das, K. C., Gutman, I., 10.1016/j.amc.2021.126575, Appl. Math. Comput. 412 (2022), Article ID 126575, 8 pages. (2022) Zbl07426979MR4300333DOI10.1016/j.amc.2021.126575
- Deng, H., Tang, Z., Wu, R., 10.1002/qua.26622, Int. J. Quantum Chem. 121 (2021), Article ID e26622, 9 pages. (2021) DOI10.1002/qua.26622
- Gutman, I., Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021), 11-16. (2021) Zbl1474.92154
- Liu, H., Chen, H., Xiao, Q., Fang, X., Tang, Z., 10.1002/qua.26689, Int. J. Quantum Chem. 121 (2021), Article ID e26689, 9 pages. (2021) DOI10.1002/qua.26689
- Liu, H., Gutman, I., You, L., Huang, Y., 10.1007/s10910-022-01333-y, J. Math. Chem. 60 (2022), 771-798. (2022) Zbl07534385MR4402726DOI10.1007/s10910-022-01333-y
- Rada, J., Rodríguez, J. M., Sigarreta, J. M., 10.1016/j.dam.2021.04.014, Discrete Appl. Math. 299 (2021), 87-97. (2021) Zbl1465.05042MR4256885DOI10.1016/j.dam.2021.04.014
- Réti, T., Došlić, T., Ali, A., 10.47443/cm.2021.0006, Contrib. Math. 3 (2021), 11-18. (2021) MR4399418DOI10.47443/cm.2021.0006
- Wang, Z., Mao, Y., Li, Y., Furtula, B., On relations between Sombor and other degree-based indices, J. Appl. Math. Comput. 68 (2022), 1-17 9999DOI99999 10.1007/s12190-021-01516-x . (2022) Zbl07534916MR4370614
- Zhou, T., Lin, Z., Miao, L., 10.47443/dml.2021.0035, DML, Discrete Math. Lett. 7 (2021), 24-29. (2021) MR4256414DOI10.47443/dml.2021.0035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.