Quasi-tree graphs with the minimal Sombor indices

Yibo Li; Huiqing Liu; Ruiting Zhang

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 4, page 1227-1238
  • ISSN: 0011-4642

Abstract

top
The Sombor index S O ( G ) of a graph G is the sum of the edge weights d G 2 ( u ) + d G 2 ( v ) of all edges u v of G , where d G ( u ) denotes the degree of the vertex u in G . A connected graph G = ( V , E ) is called a quasi-tree if there exists u V ( G ) such that G - u is a tree. Denote 𝒬 ( n , k ) = { G : G is a quasi-tree graph of order n with G - u being a tree and d G ( u ) = k } . We determined the minimum and the second minimum Sombor indices of all quasi-trees in 𝒬 ( n , k ) . Furthermore, we characterized the corresponding extremal graphs, respectively.

How to cite

top

Li, Yibo, Liu, Huiqing, and Zhang, Ruiting. "Quasi-tree graphs with the minimal Sombor indices." Czechoslovak Mathematical Journal 72.4 (2022): 1227-1238. <http://eudml.org/doc/298892>.

@article{Li2022,
abstract = {The Sombor index $SO(G)$ of a graph $G$ is the sum of the edge weights $\sqrt\{d^2_G(u)+d^2_G(v)\}$ of all edges $uv$ of $G$, where $d_G(u)$ denotes the degree of the vertex $u$ in $G$. A connected graph $G = (V ,E)$ is called a quasi-tree if there exists $u\in V (G)$ such that $G-u$ is a tree. Denote $\mathcal \{Q\}(n,k)=\lbrace G \colon G$ is a quasi-tree graph of order $n$ with $G-u$ being a tree and $d_G(u)=k\rbrace $. We determined the minimum and the second minimum Sombor indices of all quasi-trees in $\mathcal \{Q\}(n,k)$. Furthermore, we characterized the corresponding extremal graphs, respectively.},
author = {Li, Yibo, Liu, Huiqing, Zhang, Ruiting},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sombor index; quasi-tree; tree},
language = {eng},
number = {4},
pages = {1227-1238},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Quasi-tree graphs with the minimal Sombor indices},
url = {http://eudml.org/doc/298892},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Li, Yibo
AU - Liu, Huiqing
AU - Zhang, Ruiting
TI - Quasi-tree graphs with the minimal Sombor indices
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1227
EP - 1238
AB - The Sombor index $SO(G)$ of a graph $G$ is the sum of the edge weights $\sqrt{d^2_G(u)+d^2_G(v)}$ of all edges $uv$ of $G$, where $d_G(u)$ denotes the degree of the vertex $u$ in $G$. A connected graph $G = (V ,E)$ is called a quasi-tree if there exists $u\in V (G)$ such that $G-u$ is a tree. Denote $\mathcal {Q}(n,k)=\lbrace G \colon G$ is a quasi-tree graph of order $n$ with $G-u$ being a tree and $d_G(u)=k\rbrace $. We determined the minimum and the second minimum Sombor indices of all quasi-trees in $\mathcal {Q}(n,k)$. Furthermore, we characterized the corresponding extremal graphs, respectively.
LA - eng
KW - Sombor index; quasi-tree; tree
UR - http://eudml.org/doc/298892
ER -

References

top
  1. Bondy, J. A., Murty, U. S. R., Graph Theory, Graduate Texts in Mathematics 244. Springer, Berlin (2008),9999DOI99999 10.1007/978-1-84628-970-5 . (2008) Zbl1134.05001MR2368647
  2. Chen, H., Li, W., Wang, J., 10.46793/match.87-1.023C, MATCH Commun. Math. Comput. Chem. 87 (2022), 23-49. (2022) Zbl7582823DOI10.46793/match.87-1.023C
  3. Cruz, R., Gutman, I., Rada, J., 10.1016/j.amc.2021.126018, Appl. Math. Comput. 399 (2021), Article ID 126018, 10 pages. (2021) Zbl07423489MR4212004DOI10.1016/j.amc.2021.126018
  4. Cruz, R., Rada, J., 10.1007/s10910-021-01232-8, J. Math. Chem. 59 (2021), 1098-1116. (2021) Zbl1462.05071MR4232832DOI10.1007/s10910-021-01232-8
  5. Cruz, R., Rada, J., Sigarreta, J. M., 10.1016/j.amc.2021.126414, Appl. Math. Comput. 409 (2021), Article ID 126414, 9 pages. (2021) Zbl07425030MR4271495DOI10.1016/j.amc.2021.126414
  6. Das, K. C., Gutman, I., 10.1016/j.amc.2021.126575, Appl. Math. Comput. 412 (2022), Article ID 126575, 8 pages. (2022) Zbl07426979MR4300333DOI10.1016/j.amc.2021.126575
  7. Deng, H., Tang, Z., Wu, R., 10.1002/qua.26622, Int. J. Quantum Chem. 121 (2021), Article ID e26622, 9 pages. (2021) DOI10.1002/qua.26622
  8. Gutman, I., Geometric approach to degree-based topological indices: Sombor indices, MATCH Commun. Math. Comput. Chem. 86 (2021), 11-16. (2021) Zbl1474.92154
  9. Liu, H., Chen, H., Xiao, Q., Fang, X., Tang, Z., 10.1002/qua.26689, Int. J. Quantum Chem. 121 (2021), Article ID e26689, 9 pages. (2021) DOI10.1002/qua.26689
  10. Liu, H., Gutman, I., You, L., Huang, Y., 10.1007/s10910-022-01333-y, J. Math. Chem. 60 (2022), 771-798. (2022) Zbl07534385MR4402726DOI10.1007/s10910-022-01333-y
  11. Rada, J., Rodríguez, J. M., Sigarreta, J. M., 10.1016/j.dam.2021.04.014, Discrete Appl. Math. 299 (2021), 87-97. (2021) Zbl1465.05042MR4256885DOI10.1016/j.dam.2021.04.014
  12. Réti, T., Došlić, T., Ali, A., 10.47443/cm.2021.0006, Contrib. Math. 3 (2021), 11-18. (2021) MR4399418DOI10.47443/cm.2021.0006
  13. Wang, Z., Mao, Y., Li, Y., Furtula, B., On relations between Sombor and other degree-based indices, J. Appl. Math. Comput. 68 (2022), 1-17 9999DOI99999 10.1007/s12190-021-01516-x . (2022) Zbl07534916MR4370614
  14. Zhou, T., Lin, Z., Miao, L., 10.47443/dml.2021.0035, DML, Discrete Math. Lett. 7 (2021), 24-29. (2021) MR4256414DOI10.47443/dml.2021.0035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.