Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem
Lydia Bouchal a; Karima Mebarki a; Svetlin Georgiev Georgiev b
Archivum Mathematicum (2022)
- Volume: 058, Issue: 4, page 199-211
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBouchal a, Lydia, Mebarki a, Karima, and Georgiev b, Svetlin Georgiev. "Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem." Archivum Mathematicum 058.4 (2022): 199-211. <http://eudml.org/doc/298895>.
@article{Bouchala2022,
abstract = {In this paper, by using recent results on fixed point index, we develop a new fixed point theorem of functional type for the sum of two operators $T+S$ where $I-T$ is Lipschitz invertible and $S$ a $k$-set contraction. This fixed point theorem is then used to establish a new result on the existence of positive solutions to a non-autonomous second order difference equation.},
author = {Bouchal a, Lydia, Mebarki a, Karima, Georgiev b, Svetlin Georgiev},
journal = {Archivum Mathematicum},
keywords = {fixed point; sum of operators; non-autonomous difference equations; positive solution},
language = {eng},
number = {4},
pages = {199-211},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem},
url = {http://eudml.org/doc/298895},
volume = {058},
year = {2022},
}
TY - JOUR
AU - Bouchal a, Lydia
AU - Mebarki a, Karima
AU - Georgiev b, Svetlin Georgiev
TI - Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 4
SP - 199
EP - 211
AB - In this paper, by using recent results on fixed point index, we develop a new fixed point theorem of functional type for the sum of two operators $T+S$ where $I-T$ is Lipschitz invertible and $S$ a $k$-set contraction. This fixed point theorem is then used to establish a new result on the existence of positive solutions to a non-autonomous second order difference equation.
LA - eng
KW - fixed point; sum of operators; non-autonomous difference equations; positive solution
UR - http://eudml.org/doc/298895
ER -
References
top- Agarwal, R.P., O’Regan, D., Wong, P.J.Y., Positive solutions of differential, difference and integral equations, Springer Science and Business Media, 1998. (1998) MR1680024
- Anderson, D.R., Avery, R.I., 10.1016/S0898-1221(01)00158-4, Comput. Math. Appl. 42 (3–5) (2001), 333–340. (2001) MR1837995DOI10.1016/S0898-1221(01)00158-4
- Anderson, D.R., Avery, R.I., 10.1080/10236190290015344, J. Difference Equ. Appl. 8 (11) (2002), 1073–1083. (2002) MR1942442DOI10.1080/10236190290015344
- Anderson, D.R., Avery, R.I., A topological proof and extension of the Leggett-Williams fixed point theorem, Commun. Appl. Nonlinear Anal. 16 (4) (2009), 39–44. (2009) MR2591327
- Anderson, D.R., Avery, R.I., 10.14232/ejqtde.2014.1.17, Electron. J. Qual. Theory Differ. Equ. 2014 (17) (2014), 1–9. (2014) MR3210547DOI10.14232/ejqtde.2014.1.17
- Anderson, D.R., Avery, R.I., Henderson, J., Some Fixed point theorems of Leggett-Williams type, Rocky Montain J. Math. 41 (2011), 371–386. (2011) MR2794444
- Anderson, D.R., Avery, R.I., Henderson, J., An extension of the compression-expansion fixed point theorem of functional type, Electron. J. Differential Equations 2016 (253) (2016), 1–9. (2016) MR3578274
- Anderson, D.R., Avery, R.I., Henderson, J., Liu, X., Operator type compression-expansion fixed point theorem, Electron. J. Differential Equations 2011 (2011), 1–11. (2011) MR2788661
- Anderson, D.R., Henderson, J., Avery, R.I., Functional compression-expansion fixed point theorem of Leggett-Williams type, Electron. J. Differential Equations 2010 (2010), 1–9. (2010) MR2651744
- Banas, J., Goebel, K., Measures of noncompactness in Banach spaces, Lect. Notes Pure Appl. Math., Marcel Dekker, Inc., New York, 1980. (1980) MR0591679
- Djebali, S., Mebarki, K., Fixed point index theory for perturbation of expansive mappings by -set contractions, Topol. Methods Nonlinear Anal. 54 (2A) (2019), 613–640. (2019) MR4061312
- Georgiev, S.G., Mebarki, K., 10.4995/agt.2021.13248, Appl. Gen. Topol. 22 (2) (2021), 259–294. (2021) MR4359767DOI10.4995/agt.2021.13248
- Guo, D., A new fixed point theorem, Acta Math. Sinica 24 (3) (1981), 444–450. (1981) MR0634843
- Guo, D., Cho, Y.J., Zhu, J., Partial ordering methods in nonlinear problems, Shangdon Science and Technology Publishing Press, Shangdon, 1985. (1985) MR2084490
- Guo, D., Lakshmikantham, V., Nonlinear problems in abstract cones, vol. 5, Academic Press, Boston, Mass., USA, 1988. (1988) Zbl0661.47045MR0959889
- He, X., Ge, W., 10.1006/jmaa.2001.7824, J. Math. Anal. Appl. 268 (1) (2002), 256–265. (2002) MR1893205DOI10.1006/jmaa.2001.7824
- Henderson, J., Liu, X., Lyons, J.W., al., et, 10.7494/OpMath.2010.30.4.447, Opuscula Math. 30 (4) (2010), 447–456. (2010) MR2726433DOI10.7494/OpMath.2010.30.4.447
- Henderson, J., Thompson, H., 10.1090/S0002-9939-00-05644-6, Proc. Amer. Math. Soc. 128 (8) (2000), 2373–2379. (2000) MR1709753DOI10.1090/S0002-9939-00-05644-6
- Leggett, R.W., Williams, L.R., 10.1512/iumj.1979.28.28046, Indiana Univ. Math. J. 28 (4) (1979), 673–688. (1979) MR0542951DOI10.1512/iumj.1979.28.28046
- Lyons, J.W., Neugebauer, J.T., A difference equation with anti-periodic boundary conditions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22 (1) (2015), 47–60. (2015) MR3423259
- Mohamed, A., 10.4236/am.2021.124022, Appl. Math. 12 (4) (2021), 311–321. (2021) DOI10.4236/am.2021.124022
- Neugebauer, J., Seelbach, C., A difference equation with Dirichlet boundary conditions, Commun. Appl. Anal. 21 (2) (2017), 237–248. (2017)
- Neugebauer, J.T., The role of symmetry and concavity in the existence of solutions of a difference equation with Dirichlet boundary conditions, Int. J. Difference Equ. 15 (2) (2020), 483–491. (2020)
- Tian, Y., Ma, D., Ge, W., 10.1080/10236190500376342, J. Difference Equ. Appl. 12 (1) (2006), 57–68. (2006) MR2197585DOI10.1080/10236190500376342
- Yao, Q.L., 10.1007/s10255-003-0087-1, Acta Math. Appl. Sin. 19 (1) (2003), 117–122. (2003) Zbl1048.34031MR2053778DOI10.1007/s10255-003-0087-1
- Zhang, H.E., Sun, J.P., 10.1007/s12190-011-0531-y, J. Appl. Math. Comput. 39 (1) (2012), 385–399. (2012) MR2914482DOI10.1007/s12190-011-0531-y
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.