Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem

Lydia Bouchal a; Karima Mebarki a; Svetlin Georgiev Georgiev b

Archivum Mathematicum (2022)

  • Volume: 058, Issue: 4, page 199-211
  • ISSN: 0044-8753

Abstract

top
In this paper, by using recent results on fixed point index, we develop a new fixed point theorem of functional type for the sum of two operators T + S where I - T is Lipschitz invertible and S a k -set contraction. This fixed point theorem is then used to establish a new result on the existence of positive solutions to a non-autonomous second order difference equation.

How to cite

top

Bouchal a, Lydia, Mebarki a, Karima, and Georgiev b, Svetlin Georgiev. "Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem." Archivum Mathematicum 058.4 (2022): 199-211. <http://eudml.org/doc/298895>.

@article{Bouchala2022,
abstract = {In this paper, by using recent results on fixed point index, we develop a new fixed point theorem of functional type for the sum of two operators $T+S$ where $I-T$ is Lipschitz invertible and $S$ a $k$-set contraction. This fixed point theorem is then used to establish a new result on the existence of positive solutions to a non-autonomous second order difference equation.},
author = {Bouchal a, Lydia, Mebarki a, Karima, Georgiev b, Svetlin Georgiev},
journal = {Archivum Mathematicum},
keywords = {fixed point; sum of operators; non-autonomous difference equations; positive solution},
language = {eng},
number = {4},
pages = {199-211},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem},
url = {http://eudml.org/doc/298895},
volume = {058},
year = {2022},
}

TY - JOUR
AU - Bouchal a, Lydia
AU - Mebarki a, Karima
AU - Georgiev b, Svetlin Georgiev
TI - Positive solutions for a class of non-autonomous second order difference equations via a new functional fixed point theorem
JO - Archivum Mathematicum
PY - 2022
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 058
IS - 4
SP - 199
EP - 211
AB - In this paper, by using recent results on fixed point index, we develop a new fixed point theorem of functional type for the sum of two operators $T+S$ where $I-T$ is Lipschitz invertible and $S$ a $k$-set contraction. This fixed point theorem is then used to establish a new result on the existence of positive solutions to a non-autonomous second order difference equation.
LA - eng
KW - fixed point; sum of operators; non-autonomous difference equations; positive solution
UR - http://eudml.org/doc/298895
ER -

References

top
  1. Agarwal, R.P., O’Regan, D., Wong, P.J.Y., Positive solutions of differential, difference and integral equations, Springer Science and Business Media, 1998. (1998) MR1680024
  2. Anderson, D.R., Avery, R.I., 10.1016/S0898-1221(01)00158-4, Comput. Math. Appl. 42 (3–5) (2001), 333–340. (2001) MR1837995DOI10.1016/S0898-1221(01)00158-4
  3. Anderson, D.R., Avery, R.I., 10.1080/10236190290015344, J. Difference Equ. Appl. 8 (11) (2002), 1073–1083. (2002) MR1942442DOI10.1080/10236190290015344
  4. Anderson, D.R., Avery, R.I., A topological proof and extension of the Leggett-Williams fixed point theorem, Commun. Appl. Nonlinear Anal. 16 (4) (2009), 39–44. (2009) MR2591327
  5. Anderson, D.R., Avery, R.I., 10.14232/ejqtde.2014.1.17, Electron. J. Qual. Theory Differ. Equ. 2014 (17) (2014), 1–9. (2014) MR3210547DOI10.14232/ejqtde.2014.1.17
  6. Anderson, D.R., Avery, R.I., Henderson, J., Some Fixed point theorems of Leggett-Williams type, Rocky Montain J. Math. 41 (2011), 371–386. (2011) MR2794444
  7. Anderson, D.R., Avery, R.I., Henderson, J., An extension of the compression-expansion fixed point theorem of functional type, Electron. J. Differential Equations 2016 (253) (2016), 1–9. (2016) MR3578274
  8. Anderson, D.R., Avery, R.I., Henderson, J., Liu, X., Operator type compression-expansion fixed point theorem, Electron. J. Differential Equations 2011 (2011), 1–11. (2011) MR2788661
  9. Anderson, D.R., Henderson, J., Avery, R.I., Functional compression-expansion fixed point theorem of Leggett-Williams type, Electron. J. Differential Equations 2010 (2010), 1–9. (2010) MR2651744
  10. Banas, J., Goebel, K., Measures of noncompactness in Banach spaces, Lect. Notes Pure Appl. Math., Marcel Dekker, Inc., New York, 1980. (1980) MR0591679
  11. Djebali, S., Mebarki, K., Fixed point index theory for perturbation of expansive mappings by k -set contractions, Topol. Methods Nonlinear Anal. 54 (2A) (2019), 613–640. (2019) MR4061312
  12. Georgiev, S.G., Mebarki, K., 10.4995/agt.2021.13248, Appl. Gen. Topol. 22 (2) (2021), 259–294. (2021) MR4359767DOI10.4995/agt.2021.13248
  13. Guo, D., A new fixed point theorem, Acta Math. Sinica 24 (3) (1981), 444–450. (1981) MR0634843
  14. Guo, D., Cho, Y.J., Zhu, J., Partial ordering methods in nonlinear problems, Shangdon Science and Technology Publishing Press, Shangdon, 1985. (1985) MR2084490
  15. Guo, D., Lakshmikantham, V., Nonlinear problems in abstract cones, vol. 5, Academic Press, Boston, Mass., USA, 1988. (1988) Zbl0661.47045MR0959889
  16. He, X., Ge, W., 10.1006/jmaa.2001.7824, J. Math. Anal. Appl. 268 (1) (2002), 256–265. (2002) MR1893205DOI10.1006/jmaa.2001.7824
  17. Henderson, J., Liu, X., Lyons, J.W., al., et, 10.7494/OpMath.2010.30.4.447, Opuscula Math. 30 (4) (2010), 447–456. (2010) MR2726433DOI10.7494/OpMath.2010.30.4.447
  18. Henderson, J., Thompson, H., 10.1090/S0002-9939-00-05644-6, Proc. Amer. Math. Soc. 128 (8) (2000), 2373–2379. (2000) MR1709753DOI10.1090/S0002-9939-00-05644-6
  19. Leggett, R.W., Williams, L.R., 10.1512/iumj.1979.28.28046, Indiana Univ. Math. J. 28 (4) (1979), 673–688. (1979) MR0542951DOI10.1512/iumj.1979.28.28046
  20. Lyons, J.W., Neugebauer, J.T., A difference equation with anti-periodic boundary conditions, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22 (1) (2015), 47–60. (2015) MR3423259
  21. Mohamed, A., 10.4236/am.2021.124022, Appl. Math. 12 (4) (2021), 311–321. (2021) DOI10.4236/am.2021.124022
  22. Neugebauer, J., Seelbach, C., A difference equation with Dirichlet boundary conditions, Commun. Appl. Anal. 21 (2) (2017), 237–248. (2017) 
  23. Neugebauer, J.T., The role of symmetry and concavity in the existence of solutions of a difference equation with Dirichlet boundary conditions, Int. J. Difference Equ. 15 (2) (2020), 483–491. (2020) 
  24. Tian, Y., Ma, D., Ge, W., 10.1080/10236190500376342, J. Difference Equ. Appl. 12 (1) (2006), 57–68. (2006) MR2197585DOI10.1080/10236190500376342
  25. Yao, Q.L., 10.1007/s10255-003-0087-1, Acta Math. Appl. Sin. 19 (1) (2003), 117–122. (2003) Zbl1048.34031MR2053778DOI10.1007/s10255-003-0087-1
  26. Zhang, H.E., Sun, J.P., 10.1007/s12190-011-0531-y, J. Appl. Math. Comput. 39 (1) (2012), 385–399. (2012) MR2914482DOI10.1007/s12190-011-0531-y

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.