Stochastic performance measurement in two-stage network processes: A data envelopment analysis approach

Alireza Amirteimoori; Saber Mehdizadeh; Sohrab Kordrostami

Kybernetika (2022)

  • Volume: 58, Issue: 2, page 200-217
  • ISSN: 0023-5954

Abstract

top
In classic data envelopment analysis models, two-stage network structures are studied in cases in which the input/output data set are deterministic. In many real applications, however, we face uncertainty. This paper proposes a two-stage network DEA model when the input/output data are stochastic. A stochastic two-stage network DEA model is formulated based on the chance-constrained programming. Linearization techniques and the assumption of single underlying factor of the data are used to construct the equivalent deterministic linear programming model. The relationship between the stochastic efficiency of each stage and stochastic centralized efficiency of the whole process, at different confidence levels, is discussed. To illustrate the real applicability of the proposed approach, a real case on 16 commercial banks in China is given.

How to cite

top

Amirteimoori, Alireza, Mehdizadeh, Saber, and Kordrostami, Sohrab. "Stochastic performance measurement in two-stage network processes: A data envelopment analysis approach." Kybernetika 58.2 (2022): 200-217. <http://eudml.org/doc/298901>.

@article{Amirteimoori2022,
abstract = {In classic data envelopment analysis models, two-stage network structures are studied in cases in which the input/output data set are deterministic. In many real applications, however, we face uncertainty. This paper proposes a two-stage network DEA model when the input/output data are stochastic. A stochastic two-stage network DEA model is formulated based on the chance-constrained programming. Linearization techniques and the assumption of single underlying factor of the data are used to construct the equivalent deterministic linear programming model. The relationship between the stochastic efficiency of each stage and stochastic centralized efficiency of the whole process, at different confidence levels, is discussed. To illustrate the real applicability of the proposed approach, a real case on 16 commercial banks in China is given.},
author = {Amirteimoori, Alireza, Mehdizadeh, Saber, Kordrostami, Sohrab},
journal = {Kybernetika},
keywords = {stochastic DEA; chance-constrained models; two-stage network systems; efficiency},
language = {eng},
number = {2},
pages = {200-217},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stochastic performance measurement in two-stage network processes: A data envelopment analysis approach},
url = {http://eudml.org/doc/298901},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Amirteimoori, Alireza
AU - Mehdizadeh, Saber
AU - Kordrostami, Sohrab
TI - Stochastic performance measurement in two-stage network processes: A data envelopment analysis approach
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 2
SP - 200
EP - 217
AB - In classic data envelopment analysis models, two-stage network structures are studied in cases in which the input/output data set are deterministic. In many real applications, however, we face uncertainty. This paper proposes a two-stage network DEA model when the input/output data are stochastic. A stochastic two-stage network DEA model is formulated based on the chance-constrained programming. Linearization techniques and the assumption of single underlying factor of the data are used to construct the equivalent deterministic linear programming model. The relationship between the stochastic efficiency of each stage and stochastic centralized efficiency of the whole process, at different confidence levels, is discussed. To illustrate the real applicability of the proposed approach, a real case on 16 commercial banks in China is given.
LA - eng
KW - stochastic DEA; chance-constrained models; two-stage network systems; efficiency
UR - http://eudml.org/doc/298901
ER -

References

top
  1. Azadi, M., Jafarian, M., Saen, R. F., Mirhedayatian, S. M., , Comp. Oper. Res. 54 (2015), 274-285. MR3281255DOI
  2. Charnes, A., Cooper, W. W., Management Models and Industrial Applications of Linear Programming., John Wiley and Sons, Inc., New York 1961. MR0157773
  3. Charnes, A., Cooper, W. W., , Naval Research Logistics Quarterly 9 (1962), 3-4, 181-186. MR0152370DOI
  4. Charnes, A., Cooper, W. W., , Europ. J. Oper. Res. 1 (1977), 1, 39-54. MR0452646DOI
  5. Charnes, A., Cooper, W. W., Rhodes, E., , Europ. J. 0per. Res. 2 (1978), 6, 429-444. Zbl0425.90086MR0525905DOI
  6. Chen, Y., Cook, W. D., Li, N., Zhu, J., , Europ. J. Oper. Res. 196 (2009), 3, 1170-1176. DOI
  7. Coelli, T. J., Rao, D. S. P., O'Donnell, C. J., Battese, G. E., An introduction to efficiency and productivity analysis., Springer Science Business Media, 2005. 
  8. Cook, W. D., Liang, Li., Zhu, J., , Omega 38 (2010), 6, 423-430. DOI
  9. Cooper, W. W., Huang, Z., Lelas, V., Li, S. X., Olesen, O. B., 10.1023/A:1018320430249, J. Product. Anal. 9 (1998), 1, 53-79. DOI10.1023/A:1018320430249
  10. Cooper, W. W., Huang, Z., Lelas, V., Li, S. X., , J. Product. Anal. 66 (1996), 4, 279-295. MR1409847DOI
  11. Cooper, W. W., Seiford, L. M., Tone, K., Introduction to data envelopment analysis and its uses: with DEA-solver software and references., Springer Science and Business Media, 2006. 
  12. Dotoli, M., Epicoco, N., Falagario, M., Sciancalepore, F., , Comp. Industr. Engrg. 79 (2015), 103-114. DOI
  13. Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., Shale, E. A., , Europ. J. Oper. Res. 132 (2001), 2, 245-259. DOI
  14. Färe, R., Grosskopf, S., Whittaker, G., , Springer, Boston 2007, pp. 209-240. DOI
  15. Hahn, G. J., Sens, T., Decouttere, C., Vandaele, N.GrosskopfJ., , Comp. Industr. Engrg. 98 (2016), 275-288. DOI
  16. Hua, Z., Bian, Y., , Int. J. Management Decision Making 9 (2008), 2, 141-153. DOI
  17. Huang, Z., Li, S. X., , Europ. J. Oper. Res. 95 (1996), 2, 390-403. DOI
  18. Izadikhah, M., Saen, R. F., , Comp. Oper. Res. 100 (2018), 343-367. MR3854885DOI
  19. Kahane, Y., , Management Sci. 23 (1977), 10, 1060-1069. DOI
  20. Kao, C., Hwang, S. N., , Europ. J. Oper. Res. 185 (2008), 1, 418-429. DOI
  21. Khalili-Damghani, K., Shahmir, Z., , Comp. Industr. Engrg. 88 (2015), 131-150. DOI
  22. Kordrostami, S., Amirteimoori, A., , Appl. Math. Comput. 171 (2005), 2, 721-729. MR2199661DOI
  23. Liang, L., Cook, W. D., Zhu, J., , Naval Research Logistics (NRL) 55 (2008), 7, 643-653. MR2450593DOI
  24. Liu, S. T., , Comp. Industr. Engrg. 74 (2014), 149-160. DOI
  25. Liu, W., Zhou, Z., Ma, C., Liu, D., Shen, W., , Omega 56 (2015), 74-87. MR3362977DOI
  26. Lu, C. C., , Comput. Industr. Engrg. 81 (2015), 78-89. DOI
  27. Maghbouli, M., Amirteimoori, A., Kordrostami, S., , Measurement 48 (2014), 109-118. DOI
  28. Mehdizadeh, S., Amirteimoori, A., Charles, V., Behzadi, M. H., Kordrostami, S., , J. Oper. Res. Soc. 72 (2021), 2, 354-366. DOI
  29. Moheb-Alizadeh, H., Handfield, R., Warsing, D., , J. Cleaner Product. 308 (2021), 25, 1273-1323. DOI
  30. Olesen, O. B., Petersen, N. C., Foundation of chance constrained data envelopment analysis for Pareto-Koopmann efficient production possibility sets., In: Proc. International DEA Symposium 2000, Measurement and Improvement in the 21st Century, The University of Queensland. 2000, pp. 313-349. 
  31. Paradi, J. C., Zhu, H., , Omega 41 (2013), 1, 61-79. DOI
  32. Ray, S. C., , Cambridge University Press 2004. MR2066051DOI
  33. Sharpe, W. F., , Management Sci. 9 (1963), 2, 277-293. DOI
  34. Seiford, L. M., Zhu, J., , Management Sci. 45 (1999), 9, 1270-1288. DOI
  35. Wang, K., Huang, W., Wu, J., Liu, Y. N., , Omega 44 (2014), 5-20. DOI
  36. Wanke, P., Tsionas, M. G., Chen, Z., Antunes, J. M., , Int. Rev. Econom. Finance 69 (2020), 456-468. DOI
  37. Wei, G., Chen, J., Wang, J., , Omega 48 (2014), 1-9. DOI
  38. Yang, F., Wu, D., Liang, L., Bi, G., Wu, D. D., , Ann. Oper. Res. 185 (2011), 1, 195-211. MR2788794DOI
  39. Zhou, Z., Lin, L., Xiao, H., Ma, C., Wu, S., , Comp. Industr. Engrg. 110 (2017), 404-412. DOI
  40. Zhou, Z., Sun, W., Xiao, H., Jin, Q., Liu, W., , J. Management Sci. Engrg. 6 (2021), 3, 413-434. DOI
  41. Zhu, J., Quantitative models for performance evaluation and benchmarking: data envelopment analysis with spreadsheets., J. Management Sci. Engrg. 2 (2009). MR2469202
  42. Zhu, J., Cook, W. D., eds, , Springer Science and Business Media, 2007. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.