Rings generalized by tripotents and nilpotents
Huanyin Chen; Marjan Sheibani; Nahid Ashrafi
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 1175-1182
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Huanyin, Sheibani, Marjan, and Ashrafi, Nahid. "Rings generalized by tripotents and nilpotents." Czechoslovak Mathematical Journal 72.4 (2022): 1175-1182. <http://eudml.org/doc/298908>.
@article{Chen2022,
abstract = {We present new characterizations of the rings for which every element is a sum of two tripotents and a nilpotent that commute. These extend the results of Z. L. Ying, M. T. Koşan, Y. Zhou (2016) and Y. Zhou (2018).},
author = {Chen, Huanyin, Sheibani, Marjan, Ashrafi, Nahid},
journal = {Czechoslovak Mathematical Journal},
keywords = {nilpotent; tripotent; 2-idempotent; exchange ring},
language = {eng},
number = {4},
pages = {1175-1182},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Rings generalized by tripotents and nilpotents},
url = {http://eudml.org/doc/298908},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Chen, Huanyin
AU - Sheibani, Marjan
AU - Ashrafi, Nahid
TI - Rings generalized by tripotents and nilpotents
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1175
EP - 1182
AB - We present new characterizations of the rings for which every element is a sum of two tripotents and a nilpotent that commute. These extend the results of Z. L. Ying, M. T. Koşan, Y. Zhou (2016) and Y. Zhou (2018).
LA - eng
KW - nilpotent; tripotent; 2-idempotent; exchange ring
UR - http://eudml.org/doc/298908
ER -
References
top- Abyzov, A. N., 10.33048/smzh.2019.60.202, Sib. Math. J. 60 (2019), 197-208. (2019) Zbl1461.16040MR3951146DOI10.33048/smzh.2019.60.202
- Chen, H., 10.1142/8006, Series in Algebra 11. World Scientific, Hackensack (2011). (2011) Zbl1245.16002MR2752904DOI10.1142/8006
- Chen, H., Sheibani, M., 10.1142/S021949881750178X, J. Algebra Appl. 16 (2017), Article ID 1750178, 12 pages. (2017) Zbl1382.16035MR3661645DOI10.1142/S021949881750178X
- Danchev, P. V., Lam, T.-Y., 10.5486/PMD.2016.7405, Publ. Math. 88 (2016), 449-466. (2016) Zbl1374.16089MR3491753DOI10.5486/PMD.2016.7405
- Diesl, A. J., 10.1016/j.jalgebra.2013.02.020, J. Algebra 383 (2013), 197-211. (2013) Zbl1296.16016MR3037975DOI10.1016/j.jalgebra.2013.02.020
- Koşan, M. T., Wang, Z., Zhou, Y., 10.1016/j.jpaa.2015.07.009, J. Pure Appl. Algebra 220 (2016), 633-646. (2016) Zbl1335.16026MR3399382DOI10.1016/j.jpaa.2015.07.009
- Koşan, M. T., Yildirim, T., Zhou, Y., 10.4153/S0008439519000092, Can. Math. Bull. 62 (2019), 810-821. (2019) Zbl07128566MR4028489DOI10.4153/S0008439519000092
- Koşan, M. T., Yildirim, T., Zhou, Y., 10.1142/S0219498820500656, J. Algebra Appl. 19 (2020), Article ID 2050065, 14 pages. (2020) Zbl1457.16036MR4098929DOI10.1142/S0219498820500656
- Ying, Z., Koşan, M. T., Zhou, Y., 10.4153/CMB-2016-009-0, Can. Math. Bull. 59 (2016), 661-672. (2016) Zbl1373.16067MR3563747DOI10.4153/CMB-2016-009-0
- Zhou, Y., 10.1142/S0219498818500093, J. Algebra Appl. 17 (2018), Article ID 1850009, 7 pages. (2018) Zbl1415.16034MR3741066DOI10.1142/S0219498818500093
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.