Weighted Erdős-Kac type theorem over quadratic field in short intervals

Xiaoli Liu; Zhishan Yang

Czechoslovak Mathematical Journal (2022)

  • Volume: 72, Issue: 4, page 957-976
  • ISSN: 0011-4642

Abstract

top
Let 𝕂 be a quadratic field over the rational field and a 𝕂 ( n ) be the number of nonzero integral ideals with norm n . We establish Erdős-Kac type theorems weighted by a 𝕂 ( n ) l and a 𝕂 ( n 2 ) l of quadratic field in short intervals with l + . We also get asymptotic formulae for the average behavior of a 𝕂 ( n ) l and a 𝕂 ( n 2 ) l in short intervals.

How to cite

top

Liu, Xiaoli, and Yang, Zhishan. "Weighted Erdős-Kac type theorem over quadratic field in short intervals." Czechoslovak Mathematical Journal 72.4 (2022): 957-976. <http://eudml.org/doc/298910>.

@article{Liu2022,
abstract = {Let $\mathbb \{K\}$ be a quadratic field over the rational field and $a_\{\mathbb \{K\}\} ( n)$ be the number of nonzero integral ideals with norm $n$. We establish Erdős-Kac type theorems weighted by $a_\{\mathbb \{K\}\} (n)^l$ and $a_\{\mathbb \{K\}\} (n^2 )^l$ of quadratic field in short intervals with $l\in \mathbb \{Z\}^\{+\}$. We also get asymptotic formulae for the average behavior of $a_\{\mathbb \{K\}\}(n)^l$ and $a_\{\mathbb \{K\}\} ( n^2)^l$ in short intervals.},
author = {Liu, Xiaoli, Yang, Zhishan},
journal = {Czechoslovak Mathematical Journal},
keywords = {ideal counting function; Erdős-Kac theorem; quadratic field; short intervals; mean value},
language = {eng},
number = {4},
pages = {957-976},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weighted Erdős-Kac type theorem over quadratic field in short intervals},
url = {http://eudml.org/doc/298910},
volume = {72},
year = {2022},
}

TY - JOUR
AU - Liu, Xiaoli
AU - Yang, Zhishan
TI - Weighted Erdős-Kac type theorem over quadratic field in short intervals
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 957
EP - 976
AB - Let $\mathbb {K}$ be a quadratic field over the rational field and $a_{\mathbb {K}} ( n)$ be the number of nonzero integral ideals with norm $n$. We establish Erdős-Kac type theorems weighted by $a_{\mathbb {K}} (n)^l$ and $a_{\mathbb {K}} (n^2 )^l$ of quadratic field in short intervals with $l\in \mathbb {Z}^{+}$. We also get asymptotic formulae for the average behavior of $a_{\mathbb {K}}(n)^l$ and $a_{\mathbb {K}} ( n^2)^l$ in short intervals.
LA - eng
KW - ideal counting function; Erdős-Kac theorem; quadratic field; short intervals; mean value
UR - http://eudml.org/doc/298910
ER -

References

top
  1. Bump, D., 10.1017/CBO9780511609572, Cambridge Studies in Advanced Mathematics 55. Cambridge University Press, Cambridge (1997). (1997) Zbl0868.11022MR1431508DOI10.1017/CBO9780511609572
  2. Chandrasekharan, K., Good, A., 10.1007/BF01323653, Monatsh. Math. 95 (1983), 99-109. (1983) Zbl0498.12009MR0697150DOI10.1007/BF01323653
  3. Chandrasekharan, K., Narasimhan, R., 10.1007/BF01343729, Math. Ann. 152 (1963), 30-64. (1963) Zbl0116.27001MR0153643DOI10.1007/BF01343729
  4. Erdős, P., Kac, M., 10.1073/pnas.25.4.206, Proc. Natl. Acad. Sci. USA 25 (1939), 206-207. (1939) Zbl0021.20702MR0002374DOI10.1073/pnas.25.4.206
  5. Huxley, M. N., 10.1007/BF01418933, Invent. Math. 15 (1972), 164-170. (1972) Zbl0241.10026MR0292774DOI10.1007/BF01418933
  6. Landau, E., Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, German B. G. Teubner, Leipzig (1927),9999JFM99999 53.0141.09. (1927) MR0031002
  7. Liu, X.-L., Yang, Z.-S., 10.1007/s10474-020-01087-6, Acta Math. Hung. 162 (2020), 465-482. (2020) Zbl1474.11169MR4173309DOI10.1007/s10474-020-01087-6
  8. Lü, G., Wang, Y., 10.1007/s11425-010-4091-7, Sci. China, Math. 53 (2010), 2417-2424. (2010) Zbl1273.11160MR2718837DOI10.1007/s11425-010-4091-7
  9. Lü, G., Yang, Z., 10.1016/j.jnt.2011.01.018, J. Number Theory 131 (2011), 1924-1938. (2011) Zbl1261.11073MR2811559DOI10.1016/j.jnt.2011.01.018
  10. Nowak, W. G., 10.1002/mana.19931610107, Math. Nachr. 161 (1993), 59-74. (1993) Zbl0803.11061MR1251010DOI10.1002/mana.19931610107
  11. Wu, J., Wu, Q., 10.1002/mana.201800276, Math. Nachr. 293 (2020), 178-202. (2020) Zbl07197944MR4060372DOI10.1002/mana.201800276
  12. Zhai, W., 10.4064/aa170-2-3, Acta Arith. 170 (2015), 135-160. (2015) Zbl1377.11106MR3383642DOI10.4064/aa170-2-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.