Weighted Erdős-Kac type theorem over quadratic field in short intervals
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 957-976
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Xiaoli, and Yang, Zhishan. "Weighted Erdős-Kac type theorem over quadratic field in short intervals." Czechoslovak Mathematical Journal 72.4 (2022): 957-976. <http://eudml.org/doc/298910>.
@article{Liu2022,
abstract = {Let $\mathbb \{K\}$ be a quadratic field over the rational field and $a_\{\mathbb \{K\}\} ( n)$ be the number of nonzero integral ideals with norm $n$. We establish Erdős-Kac type theorems weighted by $a_\{\mathbb \{K\}\} (n)^l$ and $a_\{\mathbb \{K\}\} (n^2 )^l$ of quadratic field in short intervals with $l\in \mathbb \{Z\}^\{+\}$. We also get asymptotic formulae for the average behavior of $a_\{\mathbb \{K\}\}(n)^l$ and $a_\{\mathbb \{K\}\} ( n^2)^l$ in short intervals.},
author = {Liu, Xiaoli, Yang, Zhishan},
journal = {Czechoslovak Mathematical Journal},
keywords = {ideal counting function; Erdős-Kac theorem; quadratic field; short intervals; mean value},
language = {eng},
number = {4},
pages = {957-976},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Weighted Erdős-Kac type theorem over quadratic field in short intervals},
url = {http://eudml.org/doc/298910},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Liu, Xiaoli
AU - Yang, Zhishan
TI - Weighted Erdős-Kac type theorem over quadratic field in short intervals
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 957
EP - 976
AB - Let $\mathbb {K}$ be a quadratic field over the rational field and $a_{\mathbb {K}} ( n)$ be the number of nonzero integral ideals with norm $n$. We establish Erdős-Kac type theorems weighted by $a_{\mathbb {K}} (n)^l$ and $a_{\mathbb {K}} (n^2 )^l$ of quadratic field in short intervals with $l\in \mathbb {Z}^{+}$. We also get asymptotic formulae for the average behavior of $a_{\mathbb {K}}(n)^l$ and $a_{\mathbb {K}} ( n^2)^l$ in short intervals.
LA - eng
KW - ideal counting function; Erdős-Kac theorem; quadratic field; short intervals; mean value
UR - http://eudml.org/doc/298910
ER -
References
top- Bump, D., 10.1017/CBO9780511609572, Cambridge Studies in Advanced Mathematics 55. Cambridge University Press, Cambridge (1997). (1997) Zbl0868.11022MR1431508DOI10.1017/CBO9780511609572
- Chandrasekharan, K., Good, A., 10.1007/BF01323653, Monatsh. Math. 95 (1983), 99-109. (1983) Zbl0498.12009MR0697150DOI10.1007/BF01323653
- Chandrasekharan, K., Narasimhan, R., 10.1007/BF01343729, Math. Ann. 152 (1963), 30-64. (1963) Zbl0116.27001MR0153643DOI10.1007/BF01343729
- Erdős, P., Kac, M., 10.1073/pnas.25.4.206, Proc. Natl. Acad. Sci. USA 25 (1939), 206-207. (1939) Zbl0021.20702MR0002374DOI10.1073/pnas.25.4.206
- Huxley, M. N., 10.1007/BF01418933, Invent. Math. 15 (1972), 164-170. (1972) Zbl0241.10026MR0292774DOI10.1007/BF01418933
- Landau, E., Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, German B. G. Teubner, Leipzig (1927),9999JFM99999 53.0141.09. (1927) MR0031002
- Liu, X.-L., Yang, Z.-S., 10.1007/s10474-020-01087-6, Acta Math. Hung. 162 (2020), 465-482. (2020) Zbl1474.11169MR4173309DOI10.1007/s10474-020-01087-6
- Lü, G., Wang, Y., 10.1007/s11425-010-4091-7, Sci. China, Math. 53 (2010), 2417-2424. (2010) Zbl1273.11160MR2718837DOI10.1007/s11425-010-4091-7
- Lü, G., Yang, Z., 10.1016/j.jnt.2011.01.018, J. Number Theory 131 (2011), 1924-1938. (2011) Zbl1261.11073MR2811559DOI10.1016/j.jnt.2011.01.018
- Nowak, W. G., 10.1002/mana.19931610107, Math. Nachr. 161 (1993), 59-74. (1993) Zbl0803.11061MR1251010DOI10.1002/mana.19931610107
- Wu, J., Wu, Q., 10.1002/mana.201800276, Math. Nachr. 293 (2020), 178-202. (2020) Zbl07197944MR4060372DOI10.1002/mana.201800276
- Zhai, W., 10.4064/aa170-2-3, Acta Arith. 170 (2015), 135-160. (2015) Zbl1377.11106MR3383642DOI10.4064/aa170-2-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.