On some combinatorial properties of generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions
Dorota Bród; Anetta Szynal-Liana; Iwona Włoch
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 1239-1248
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBród, Dorota, Szynal-Liana, Anetta, and Włoch, Iwona. "On some combinatorial properties of generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions." Czechoslovak Mathematical Journal 72.4 (2022): 1239-1248. <http://eudml.org/doc/298913>.
@article{Bród2022,
abstract = {We study generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions. We present some properties of these quaternions and the relations between the generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions.},
author = {Bród, Dorota, Szynal-Liana, Anetta, Włoch, Iwona},
journal = {Czechoslovak Mathematical Journal},
keywords = {Jacobsthal number; Jacobsthal-Lucas number; quaternion; generalized quaternion; Binet formula},
language = {eng},
number = {4},
pages = {1239-1248},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some combinatorial properties of generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions},
url = {http://eudml.org/doc/298913},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Bród, Dorota
AU - Szynal-Liana, Anetta
AU - Włoch, Iwona
TI - On some combinatorial properties of generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1239
EP - 1248
AB - We study generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions. We present some properties of these quaternions and the relations between the generalized commutative Jacobsthal quaternions and generalized commutative Jacobsthal-Lucas quaternions.
LA - eng
KW - Jacobsthal number; Jacobsthal-Lucas number; quaternion; generalized quaternion; Binet formula
UR - http://eudml.org/doc/298913
ER -
References
top- Çimen, C. B., İpek, A., 10.1007/s00006-015-0571-8, Adv. Appl. Clifford Algebr. 26 (2016), 39-51 9999DOI99999 10.1007/s00006-015-0571-8 . (2016) Zbl1344.11022MR3459988DOI10.1007/s00006-015-0571-8
- Halici, S., 10.1007/s00006-011-0317-1, Adv. Appl. Clifford Algebr. 22 (2012), 321-327. (2012) Zbl1329.11016MR2930698DOI10.1007/s00006-011-0317-1
- Horadam, A. F., 10.2307/2313129, Am. Math. Mon. 70 (1963), 289-291. (1963) Zbl0122.29402MR0146137DOI10.2307/2313129
- Horadam, A. F., Jacobsthal and Pell curves, Fibonacci Q. 26 (1988), 77-83. (1988) Zbl0644.10014MR0931426
- Horadam, A. F., Jacobsthal representation numbers, Fibonacci Q. 34 (1996), 40-54. (1996) Zbl0869.11013MR1371475
- Iyer, M. R., A note on Fibonacci quaternions, Fibonacci Q. 7 (1969), 225-229. (1969) Zbl0191.32701MR0255513
- Szynal-Liana, A., Włoch, I., 10.1007/s00006-015-0622-1, Adv. Appl. Clifford Algebr. 26 (2016), 441-447. (2016) Zbl1335.11095MR3460010DOI10.1007/s00006-015-0622-1
- Szynal-Liana, A., Włoch, I., 10.1007/s00006-015-0570-9, Adv. Appl. Clifford Algebr. 26 (2016), 435-440. (2016) Zbl1344.11027MR3460009DOI10.1007/s00006-015-0570-9
- Szynal-Liana, A., Włoch, I., 10.1007/s40590-021-00386-4, Bol. Soc. Mat. Mex., III. Ser. 28 (2022), Article ID 1, 9 pages. (2022) Zbl1479.11040MR4343010DOI10.1007/s40590-021-00386-4
- Tasci, D., On -Jacobsthal and -Jacobsthal-Lucas quaternions, J. Sci. Arts 3 (2017), 469-476. (2017)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.