On sharp characters of type
Alireza Abdollahi; Javad Bagherian; Mahdi Ebrahimi; Maryam Khatami; Zahra Shahbazi; Reza Sobhani
Czechoslovak Mathematical Journal (2022)
- Volume: 72, Issue: 4, page 1081-1087
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAbdollahi, Alireza, et al. "On sharp characters of type $\lbrace -1,0,2 \rbrace $." Czechoslovak Mathematical Journal 72.4 (2022): 1081-1087. <http://eudml.org/doc/298914>.
@article{Abdollahi2022,
abstract = {For a complex character $ \chi $ of a finite group $ G $, it is known that the product $ \{\rm sh\}(\chi ) = \prod _\{ l \in L(\chi )\} (\chi (1) - l) $ is a multiple of $ |G| $, where $ L(\chi ) $ is the image of $ \chi $ on $ G-\lbrace 1\rbrace $. The character $ \chi $ is said to be a sharp character of type $ L $ if $ L=L(\chi ) $ and $ \{\rm sh\} (\chi )=|G| $. If the principal character of $G$ is not an irreducible constituent of $\chi $, then the character $\chi $ is called normalized. It is proposed as a problem by P. J. Cameron and M. Kiyota, to find finite groups $G$ with normalized sharp characters of type $\lbrace -1,0,2\rbrace $. Here we prove that such a group with nontrivial center is isomorphic to the dihedral group of order 12.},
author = {Abdollahi, Alireza, Bagherian, Javad, Ebrahimi, Mahdi, Khatami, Maryam, Shahbazi, Zahra, Sobhani, Reza},
journal = {Czechoslovak Mathematical Journal},
keywords = {sharp character; sharp pair; finite group},
language = {eng},
number = {4},
pages = {1081-1087},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On sharp characters of type $\lbrace -1,0,2 \rbrace $},
url = {http://eudml.org/doc/298914},
volume = {72},
year = {2022},
}
TY - JOUR
AU - Abdollahi, Alireza
AU - Bagherian, Javad
AU - Ebrahimi, Mahdi
AU - Khatami, Maryam
AU - Shahbazi, Zahra
AU - Sobhani, Reza
TI - On sharp characters of type $\lbrace -1,0,2 \rbrace $
JO - Czechoslovak Mathematical Journal
PY - 2022
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 72
IS - 4
SP - 1081
EP - 1087
AB - For a complex character $ \chi $ of a finite group $ G $, it is known that the product $ {\rm sh}(\chi ) = \prod _{ l \in L(\chi )} (\chi (1) - l) $ is a multiple of $ |G| $, where $ L(\chi ) $ is the image of $ \chi $ on $ G-\lbrace 1\rbrace $. The character $ \chi $ is said to be a sharp character of type $ L $ if $ L=L(\chi ) $ and $ {\rm sh} (\chi )=|G| $. If the principal character of $G$ is not an irreducible constituent of $\chi $, then the character $\chi $ is called normalized. It is proposed as a problem by P. J. Cameron and M. Kiyota, to find finite groups $G$ with normalized sharp characters of type $\lbrace -1,0,2\rbrace $. Here we prove that such a group with nontrivial center is isomorphic to the dihedral group of order 12.
LA - eng
KW - sharp character; sharp pair; finite group
UR - http://eudml.org/doc/298914
ER -
References
top- Adhami, S. R., Iranmanesh, A., 10.1142/S0219498817500049, J. Algebra Appl. 16 (2017), Article ID 1750004, 10 pages. (2017) Zbl1377.20005MR3590865DOI10.1142/S0219498817500049
- Alvis, D., Nozawa, S., 10.2969/jmsj/04830567, J. Math. Soc. Japan 48 (1996), 567-591. (1996) Zbl0866.20004MR1389996DOI10.2969/jmsj/04830567
- Blichfeldt, H. F., 10.1090/S0002-9947-1904-1500684-5, Trans. Am. Math. Soc. 5 (1904), 461-466 9999JFM99999 35.0161.01. (1904) MR1500684DOI10.1090/S0002-9947-1904-1500684-5
- Cameron, P. J., Kataoka, T., Kiyota, M., 10.1016/0021-8693(92)90099-8, J. Algebra 152 (1992), 248-258. (1992) Zbl0776.20002MR1190415DOI10.1016/0021-8693(92)90099-8
- Cameron, P. J., Kiyota, M., 10.1016/0021-8693(88)90285-2, J. Algebra 115 (1988), 125-143. (1988) Zbl0651.20010MR0937604DOI10.1016/0021-8693(88)90285-2
- Group, GAP, GAP - Groups, Algorithms, Programming: A System for Computational Discrete Algebra: Version 4.11.0, Available at https://www.gap-system.org/ (2020). (2020)
- Isaacs, I. M., 10.1090/chel/359, AMS Chelsea Publishing, Providence (2006). (2006) Zbl1119.20005MR2270898DOI10.1090/chel/359
- Kiyota, M., 10.1016/0097-3165(79)90012-8, J. Comb. Theory, Ser. A 27 (1979), 119. (1979) Zbl0417.20003MR0541348DOI10.1016/0097-3165(79)90012-8
- Nozawa, S., 10.21099/tkbjm/1496161845, Tsukuba J. Math. 16 (1992), 269-277. (1992) Zbl0819.20009MR1178680DOI10.21099/tkbjm/1496161845
- Nozawa, S., Uno, M., 10.1016/j.jalgebra.2004.12.018, J. Algebra 286 (2005), 325-340. (2005) Zbl1071.20008MR2128020DOI10.1016/j.jalgebra.2004.12.018
- Yoguchi, T., On determining the sharp characters of finite groups, JP J. Algebra Number Theory Appl. 11 (2008), 85-98. (2008) Zbl1169.20006MR2458670
- Yoguchi, T., 10.2206/kyushujm.65.179, Kyushu J. Math. 65 (2011), 179-195. (2011) Zbl1260.20012MR2828384DOI10.2206/kyushujm.65.179
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.