The exponential cost optimality for finite horizon semi-Markov decision processes

Haifeng Huo; Xian Wen

Kybernetika (2022)

  • Volume: 58, Issue: 3, page 301-319
  • ISSN: 0023-5954

Abstract

top
This paper considers an exponential cost optimality problem for finite horizon semi-Markov decision processes (SMDPs). The objective is to calculate an optimal policy with minimal exponential costs over the full set of policies in a finite horizon. First, under the standard regular and compact-continuity conditions, we establish the optimality equation, prove that the value function is the unique solution of the optimality equation and the existence of an optimal policy by using the minimum nonnegative solution approach. Second, we establish a new value iteration algorithm to calculate both the value function and the ϵ -optimal policy. Finally, we give a computable machine maintenance system to illustrate the convergence of the algorithm.

How to cite

top

Huo, Haifeng, and Wen, Xian. "The exponential cost optimality for finite horizon semi-Markov decision processes." Kybernetika 58.3 (2022): 301-319. <http://eudml.org/doc/298915>.

@article{Huo2022,
abstract = {This paper considers an exponential cost optimality problem for finite horizon semi-Markov decision processes (SMDPs). The objective is to calculate an optimal policy with minimal exponential costs over the full set of policies in a finite horizon. First, under the standard regular and compact-continuity conditions, we establish the optimality equation, prove that the value function is the unique solution of the optimality equation and the existence of an optimal policy by using the minimum nonnegative solution approach. Second, we establish a new value iteration algorithm to calculate both the value function and the $\epsilon $-optimal policy. Finally, we give a computable machine maintenance system to illustrate the convergence of the algorithm.},
author = {Huo, Haifeng, Wen, Xian},
journal = {Kybernetika},
keywords = {semi-Markov decision processes; exponential cost; finite horizon; optimality equation; optimal policy},
language = {eng},
number = {3},
pages = {301-319},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The exponential cost optimality for finite horizon semi-Markov decision processes},
url = {http://eudml.org/doc/298915},
volume = {58},
year = {2022},
}

TY - JOUR
AU - Huo, Haifeng
AU - Wen, Xian
TI - The exponential cost optimality for finite horizon semi-Markov decision processes
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 3
SP - 301
EP - 319
AB - This paper considers an exponential cost optimality problem for finite horizon semi-Markov decision processes (SMDPs). The objective is to calculate an optimal policy with minimal exponential costs over the full set of policies in a finite horizon. First, under the standard regular and compact-continuity conditions, we establish the optimality equation, prove that the value function is the unique solution of the optimality equation and the existence of an optimal policy by using the minimum nonnegative solution approach. Second, we establish a new value iteration algorithm to calculate both the value function and the $\epsilon $-optimal policy. Finally, we give a computable machine maintenance system to illustrate the convergence of the algorithm.
LA - eng
KW - semi-Markov decision processes; exponential cost; finite horizon; optimality equation; optimal policy
UR - http://eudml.org/doc/298915
ER -

References

top
  1. Bertsekas, D. P., Shreve, S. E., Stochastic Optimal Control: The Discrete-Time Case., Academic Press, Inc. 1978. MR0511544
  2. Baüuerle, N., Rieder, U., Markov Decision Processes with Applications to Finance., Springer, Heidelberg 2011 MR2808878
  3. Baüerle, N., Rieder, U., , Math. Oper. Res. 39 (2014), 105-120. MR3173005DOI
  4. Cao, X. R., , IEEE Trans. Automat. Control 48 (2003), 758-769. MR1980580DOI
  5. Cavazos-Cadena, R., Montes-De-Oca, R., , Appl. Math. 27 (2000), 167-185. MR1768711DOI
  6. Cavazos-Cadena, R., Montes-De-Oca, R., , Math. Methl Oper. Res. 52 (2000), 133-167. MR1782381DOI
  7. Chávez-Rodríguez, S., Cavazos-Cadena, R., Cruz-Suárez, H., , J. Optim. Theory Appl. 170 (2016), 670-686. MR3527716DOI
  8. Chung, K. J., Sobel, M. J., , SIAM J. Control Optim. 25 (1987), 49-62. MR0872450DOI
  9. Ghosh, M. K., Saha, S., , Stoch. Int. J. Probab. Stoch. Process. 86 (2014), 655-675. MR3230073DOI
  10. Guo, X. P., Hernández-Lerma, O., Continuous-Time Markov Decision Process: Theorey and Applications., Springer-Verlag, Berlin 2009. MR2554588
  11. Hernández-Lerma, O., Lasserre, J. B., Discrete-Time Markov control process: Basic Optimality Criteria., Springer-Verlag, New York 1996. MR1363487
  12. Howard, R. A., Matheson, J. E., , Management Sci. 18 (1972), 356-369. MR0292497DOI
  13. Huang, Y. H., Lian, Z. T., Guo, X. P., , Adv. Appl. Probab. 50 (2018), 783-804. MR3877254DOI
  14. Huang, Y. H., Guo, X. P., , Europ. J. Oper. Res. 212 (2011), 131-140. MR2783603DOI
  15. Huang, X. X., Zou, X. L., Guo, X. P., , Sci. China Math. 58 (2015), 1923-1938. MR3383991DOI
  16. Huo, H. F., Wen, X., , Kybernetika 55 (2019), 114-133. MR3935417DOI
  17. Jaśkiewicz, A., , Oper. Res. Lett. 36 (2008), 531-534. MR2459494DOI
  18. Janssen, J., Manca, R., Semi-Markov Risk Models For Finance, Insurance, and Reliability., Springer, New York 2006. MR2301626
  19. Jaśkiewicz, A., , Math. Oper. Res. 29 (2013), 326-338. MR2065981DOI
  20. Jaquette, S. C., , Manag Sci. 23 (1976), 43-49. MR0439037DOI
  21. Luque-Vasquez, F., Minjarez-Sosa, J. A., , Math. Methods Oper. Res. 61 (2005), 455-468. MR2225824DOI
  22. Mamer, J. W., , Oper. Res. 34 (1986), 638-644. MR0874303DOI
  23. Nollau, V., , Optimization. 39, (1997), 85-97. MR1482757DOI
  24. Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic Programming MR1270015
  25. Wei, Q., , Math. Oper. Res. 84 (2016), 461-487. MR3591347DOI
  26. Wu, X., Guo, X. P., , J. Appl. Prob. 52 (2015), 441-456. MR3372085DOI
  27. Yushkevich, A. A., , Theory Probab. Appl. 26 (1982), 808-815. MR0636774DOI
  28. Zhang, Y., , SIAM J. Control Optim. 55 (2017), 2636-2666. MR3691210DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.