The exponential cost optimality for finite horizon semi-Markov decision processes
Kybernetika (2022)
- Volume: 58, Issue: 3, page 301-319
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topHuo, Haifeng, and Wen, Xian. "The exponential cost optimality for finite horizon semi-Markov decision processes." Kybernetika 58.3 (2022): 301-319. <http://eudml.org/doc/298915>.
@article{Huo2022,
abstract = {This paper considers an exponential cost optimality problem for finite horizon semi-Markov decision processes (SMDPs). The objective is to calculate an optimal policy with minimal exponential costs over the full set of policies in a finite horizon. First, under the standard regular and compact-continuity conditions, we establish the optimality equation, prove that the value function is the unique solution of the optimality equation and the existence of an optimal policy by using the minimum nonnegative solution approach. Second, we establish a new value iteration algorithm to calculate both the value function and the $\epsilon $-optimal policy. Finally, we give a computable machine maintenance system to illustrate the convergence of the algorithm.},
author = {Huo, Haifeng, Wen, Xian},
journal = {Kybernetika},
keywords = {semi-Markov decision processes; exponential cost; finite horizon; optimality equation; optimal policy},
language = {eng},
number = {3},
pages = {301-319},
publisher = {Institute of Information Theory and Automation AS CR},
title = {The exponential cost optimality for finite horizon semi-Markov decision processes},
url = {http://eudml.org/doc/298915},
volume = {58},
year = {2022},
}
TY - JOUR
AU - Huo, Haifeng
AU - Wen, Xian
TI - The exponential cost optimality for finite horizon semi-Markov decision processes
JO - Kybernetika
PY - 2022
PB - Institute of Information Theory and Automation AS CR
VL - 58
IS - 3
SP - 301
EP - 319
AB - This paper considers an exponential cost optimality problem for finite horizon semi-Markov decision processes (SMDPs). The objective is to calculate an optimal policy with minimal exponential costs over the full set of policies in a finite horizon. First, under the standard regular and compact-continuity conditions, we establish the optimality equation, prove that the value function is the unique solution of the optimality equation and the existence of an optimal policy by using the minimum nonnegative solution approach. Second, we establish a new value iteration algorithm to calculate both the value function and the $\epsilon $-optimal policy. Finally, we give a computable machine maintenance system to illustrate the convergence of the algorithm.
LA - eng
KW - semi-Markov decision processes; exponential cost; finite horizon; optimality equation; optimal policy
UR - http://eudml.org/doc/298915
ER -
References
top- Bertsekas, D. P., Shreve, S. E., Stochastic Optimal Control: The Discrete-Time Case., Academic Press, Inc. 1978. MR0511544
- Baüuerle, N., Rieder, U., Markov Decision Processes with Applications to Finance., Springer, Heidelberg 2011 MR2808878
- Baüerle, N., Rieder, U., , Math. Oper. Res. 39 (2014), 105-120. MR3173005DOI
- Cao, X. R., , IEEE Trans. Automat. Control 48 (2003), 758-769. MR1980580DOI
- Cavazos-Cadena, R., Montes-De-Oca, R., , Appl. Math. 27 (2000), 167-185. MR1768711DOI
- Cavazos-Cadena, R., Montes-De-Oca, R., , Math. Methl Oper. Res. 52 (2000), 133-167. MR1782381DOI
- Chávez-Rodríguez, S., Cavazos-Cadena, R., Cruz-Suárez, H., , J. Optim. Theory Appl. 170 (2016), 670-686. MR3527716DOI
- Chung, K. J., Sobel, M. J., , SIAM J. Control Optim. 25 (1987), 49-62. MR0872450DOI
- Ghosh, M. K., Saha, S., , Stoch. Int. J. Probab. Stoch. Process. 86 (2014), 655-675. MR3230073DOI
- Guo, X. P., Hernández-Lerma, O., Continuous-Time Markov Decision Process: Theorey and Applications., Springer-Verlag, Berlin 2009. MR2554588
- Hernández-Lerma, O., Lasserre, J. B., Discrete-Time Markov control process: Basic Optimality Criteria., Springer-Verlag, New York 1996. MR1363487
- Howard, R. A., Matheson, J. E., , Management Sci. 18 (1972), 356-369. MR0292497DOI
- Huang, Y. H., Lian, Z. T., Guo, X. P., , Adv. Appl. Probab. 50 (2018), 783-804. MR3877254DOI
- Huang, Y. H., Guo, X. P., , Europ. J. Oper. Res. 212 (2011), 131-140. MR2783603DOI
- Huang, X. X., Zou, X. L., Guo, X. P., , Sci. China Math. 58 (2015), 1923-1938. MR3383991DOI
- Huo, H. F., Wen, X., , Kybernetika 55 (2019), 114-133. MR3935417DOI
- Jaśkiewicz, A., , Oper. Res. Lett. 36 (2008), 531-534. MR2459494DOI
- Janssen, J., Manca, R., Semi-Markov Risk Models For Finance, Insurance, and Reliability., Springer, New York 2006. MR2301626
- Jaśkiewicz, A., , Math. Oper. Res. 29 (2013), 326-338. MR2065981DOI
- Jaquette, S. C., , Manag Sci. 23 (1976), 43-49. MR0439037DOI
- Luque-Vasquez, F., Minjarez-Sosa, J. A., , Math. Methods Oper. Res. 61 (2005), 455-468. MR2225824DOI
- Mamer, J. W., , Oper. Res. 34 (1986), 638-644. MR0874303DOI
- Nollau, V., , Optimization. 39, (1997), 85-97. MR1482757DOI
- Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic Programming MR1270015
- Wei, Q., , Math. Oper. Res. 84 (2016), 461-487. MR3591347DOI
- Wu, X., Guo, X. P., , J. Appl. Prob. 52 (2015), 441-456. MR3372085DOI
- Yushkevich, A. A., , Theory Probab. Appl. 26 (1982), 808-815. MR0636774DOI
- Zhang, Y., , SIAM J. Control Optim. 55 (2017), 2636-2666. MR3691210DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.